Micromolar concentrations of N-octylhydroxylamine dramatically increase the induction period in the conversion of linoleic acid to 13(S)-hydroperoxy-cis-9,trans-11-octadecadienoic acid (13-HPOD) catalyzed by soybean lipoxygenase 1. The induction period produced by N-octylhydroxylamine is abolished by 13-HPOD but not by the corresponding hydroxy acid. Addition of a catalytic amount of lipoxygenase to a mixture of 13-HPOD and N-octylhydroxylamine results in consumption of approximately 1 mumol of 13-HPOD/mumol of N-octylhydroxylamine present. These results can be explained by a model in which 13-HPOD oxidizes the enzyme from an inactive ferrous form to an active ferric form, as proposed by previous workers, and N-octylhydroxylamine reduces the enzyme back to the ferrous form. Consistent with this model, the ESR signal at g = 6.1 characteristic of ferric lipoxygenase is rapidly abolished by N-octylhydroxylamine and can be regenerated by 13-HPOD. These results provide additional support for earlier proposals that ferric lipoxygenase is the catalytically active form and also establish a novel method of inhibiting enzymes in this class. The octyl group of N-octylhydroxylamine appears to contribute to binding near the iron, since hydroxylamine and N-methylhydroxylamine do not extend the induction period. In the n-RNHOH series, activity passes through an optimum at R = decyl.
12-Iodo-cis-9-octadecenoic acid (12-IODE) is a time-dependent, irreversible inactivator of soybean lipoxygenase 1. The rate of inactivation is independent of 12-IODE concentration above 20 microM and is half-maximal at about 4 microM. Inactivation by 12-IODE requires lipid hydroperoxide, which must be present even after the initial oxidation of the iron in the enzyme from ferrous to ferric. Inactivation by 12-IODE is also dependent on O2. These findings suggest that 12-IODE is converted by the enzyme into a more reactive species, which is responsible for inactivation. No inactivation has been detected with 12-iodooctadecanoic acid, 12-bromo-cis-9-octadecenoic acid, 12-iodo-trans-9-octadecenoic acid, or a mixture of stereoisomers of 9,11-octadecadienoic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.