The hypothalamic arcuate nucleus has an essential role in mediating the homeostatic responses of the thyroid axis to fasting by altering the sensitivity of prothyrotropin-releasing hormone (pro-TRH) gene expression in the paraventricular nucleus (PVN) to feedback regulation by thyroid hormone. Because agouti-related protein (AGRP), a leptin-regulated, arcuate nucleus-derived peptide with ␣-MSH antagonist activity, is contained in axon terminals that terminate on TRH neurons in the PVN, we raised the possibility that ␣-MSH may also participate in the mechanism by which leptin influences pro-TRH gene expression. By double-labeling immunocytochemistry, ␣-MSH-IR axon varicosities were juxtaposed to ϳ70% of pro-TRH neurons in the anterior and periventricular parvocellular subdivisions of the PVN and to 34% of pro-TRH neurons in the medial parvocellular subdivision, establishing synaptic contacts both on the cell soma and dendrites. All pro-TRH neurons receiving contacts by ␣-MSH-containing fibers also were innervated by axons containing AGRP. The intracerebroventricular infusion of 300 ng of ␣-MSH every 6 hr for 3 d prevented fasting-induced suppression of pro-TRH in the PVN but had no effect on AGRP mRNA in the arcuate nucleus. ␣-MSH also increased circulating levels of free thyroxine (T4) 2.5-fold over the levels in fasted controls, but free T4 did not reach the levels in fed controls. These data suggest that ␣-MSH has an important role in the activation of pro-TRH gene expression in hypophysiotropic neurons via either a mono-and/or multisynaptic pathway to the PVN, but factors in addition to ␣-MSH also contribute to the mechanism by which leptin administration restores thyroid hormone levels to normal in fasted animals.
To determine whether the type 2 iodothyronine deiodinase (D2), the principal central nervous system enzyme converting T(4) to biologically active T(3), is regulated in tanycytes by immune activation, D2 activity was measured in the mediobasal hypothalamus (MBH) 4, 12, and 24 h after administration of bacterial lipopolysaccharide (LPS) and compared with D2 levels in the cortex and anterior pituitary of rats. In contrast to D2 activity in the cortex and anterior pituitary that showed a steady linear increase over 24 h, which was coincident with a decline in thyroid hormone and TSH levels, D2 activity peaked in the MBH 12 h after LPS administration. By in situ hybridization, the increased D2 mRNA synthesis induced by LPS was specifically localized to tanycytes lining the third ventricle. In vitro assays in HC11 and HEK-293 cells demonstrated that the p65 subunit of nuclear factor-kappaB markedly increased both rat and human D2 genes (dio2) as analyzed by promoter assays. No activation of human dio2 was observed when an 83-bp minimal promoter was used. We propose that LPS or LPS-induced cytokines directly induce D2 mRNA in tanycytes. The ensuing MBH-specific D2-mediated local thyrotoxicosis may suppress the hypothalamus-pituitary-thyroid axis by local feedback inhibition of hypophysiotropic TRH and/or TSH and contribute to the mechanism of central hypothyroidism associated with infection.
Prolonged fasting is associated with a number of changes in the thyroid axis manifested by low serum T3 and T4 levels and, paradoxically, low or normal TSH. This response is, at least partly, caused by suppression of proTRH gene expression in neurons of the hypothalamic paraventricular nucleus (PVN) and reduced hypothalamic TRH release. Because the fall in thyroid hormone levels can be blunted in mice by the systemic administration of leptin, we raised the possibility that leptin may have an important role in the neuroendocrine regulation of the thyroid axis, through effects on hypophysiotropic neurons producing proTRH. Adult male, Sprague-Dawley rats were either fed normally, fasted for 3 days, or fasted and administered leptin at a dose of 0.5 microg/gm BW i.p. every 6 h. Fasted animals showed significant reduction in plasma total and free T4 and T3 levels compared with controls, that were restored toward normal by the administration of leptin. Percent free T4, but not percent free T3, increased during fasting, further suggesting a reduction in plasma transthyretin levels that did not return to fed levels after leptin administration. By semiquantitative analysis of in situ hybridization autoradiograms, proTRH messenger RNA in medial parvocellular PVN neurons was markedly suppressed in the fasting animals but was restored to normal by leptin administration [fed vs. fast vs. fast/leptin (density units x 10(8)): 8.5 +/- 0.4, 3.2 +/- 0.2, 8.1 +/- 0.8]. In contrast, proTRH messenger RNA in adjacent neurons in the lateral hypothalamus that do not have a hypophysiotropic function remained unchanged by any of the experimental manipulations. These findings indicate that leptin has a selective, central action to modulate the hypothalamic-pituitary-thyroid axis by regulating proTRH gene expression in the PVN but does not have peripheral effects on thyroid-binding proteins. We propose that the fall in circulating leptin levels during fasting resets the set point for feedback inhibition by thyroid hormones on the biosynthesis of hypophysiotropic proTRH, thereby allowing adaptation to starvation.
Because cocaine-and amphetamine-regulated transcript (CART) coexists with ␣-melanocyte stimulating hormone (␣-MSH) in the arcuate nucleus neurons and we have recently demonstrated that ␣-MSH innervates TRH-synthesizing neurons in the hypothalamic paraventricular nucleus (PVN), we raised the possibility that CART may also be contained in fibers that innervate hypophysiotropic thyrotropin-releasing hormone (TRH) neurons and modulate TRH gene expression. Triple-labeling fluorescent in situ hybridization and immunofluorescence were performed to reveal the morphological relationships between pro-TRH mRNAcontaining neurons and CART-and ␣-MSH-immunoreactive (IR) axons. CART-IR axons densely innervated the majority of pro-TRH mRNA-containing neurons in all parvocellular subdivisions of the PVN and established asymmetric synaptic specializations with pro-TRH neurons. However, whereas all ␣-MSH-IR axons in the PVN contained CART-IR, only a portion of CART-IR axons in contact with pro-TRH neurons were immunoreactive for ␣-MSH.In the medial and periventricular parvocellular subdivisions of the PVN, CART was co-contained in ϳ80% of pro-TRH neuronal perikarya, whereas colocalization with pro-TRH was found in Ͻ10% of the anterior parvocellular subdivision neurons. In addition, Ͼ80% of TRH/CART neurons in the periventricular and medial parvocellular subdivisions accumulated Fluoro-Gold after systemic administration, suggesting that CART may serve as a marker for hypophysiotropic TRH neurons. CART prevented fasting-induced suppression of pro-TRH in the PVN when administered intracerebroventricularly and increased the content of TRH in hypothalamic cell cultures. These studies establish an anatomical association between CART and pro-TRH-producing neurons in the PVN and demonstrate that CART has a stimulatory effect on hypophysiotropic TRH neurons by increasing pro-TRH gene expression and the biosynthesis of TRH.
Because alpha-MSH has a potent stimulatory action on hypophysiotropic TRH synthesizing neurons in the hypothalamic paraventricular nucleus (PVN), preventing the effects of fasting on the gene expression of the TRH prohormone (proTRH), we hypothesized that agouti-related protein (AGRP), a melanocortin receptor antagonist, may exert a central inhibitory action on these neurons. To test the hypothesis, the effects of intracerebroventricularly administered AGRP on circulating thyroid hormone levels and proTRH mRNA in the hypothalamic paraventricular nucleus (PVN) were compared with the effects of the recently described central inhibitor of the HPT axis, neuropeptide Y (NPY). AGRP administration increased food consumption and weight gain, suppressed circulating levels of thyroid hormones (T(3) and T(4)), and resulted in an inappropriately normal TSH. These alterations were associated with a significant suppression of proTRH mRNA in the PVN, indicating that AGRP infusion resulted in a state of central hypothyroidism. While similar observations were made in the NPY-infused animals, AGRP-treated animals had higher feeding efficiency, higher T(4) levels, and lower type 2 iodothyronine deiodinase levels in brown adipose tissue than NPY-infused animals. These data demonstrate that AGRP and NPY have a similarly potent inhibitory action on the proTRH gene expression of hypophysiotropic neurons, indicating that both AGRP and NPY may play a major role in the inhibition of the HPT axis during fasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.