This techno-economic analysis/life-cycle assessment is based on actual production by the Cornell Marine Algal Biofuels Consortium with biomass productivity > 23 g/m 2-d. Ten distinct cases are presented for two locations, Texas and Hawaii, based on a 100-ha production facility with end-to-end processing that yields fungible co-products including biocrude, animal feed, and ethanol. Several processing technologies were evaluated: centrifugation and solvent extraction (POS Biosciences), thermochemical conversion (Valicor), hydrothermal liquefaction (PNNL), catalytic hydrothermal gasification (Genifuel), combined heat and power, wet extraction (OpenAlgae), and fermentation. The facility design was optimized by co-location with waste CO 2 , a terraced design for gravity flow, using renewable energy, and low cost materials. The case studies are used to determine the impact of design choices on the energy return on investment, minimum fuel and feed sale prices, discounted payback period, as well as water depletion potential, human health, ecosystem quality, non-renewable resources, and climate change environmental indicators. The most promising cases would be economically competitive at market prices around $2/L for crude oil, while also providing major environmental benefits and freshwater savings. As global demands for fuels and protein continue rising, these results are important steps towards economical and environmentally sustainable production at an industrial scale.
As a result of algae's promise as a renewable energy feedstock, numerous studies have used Life Cycle Assessment (LCA) to quantify the environmental performance of algal biofuels, yet there is no consensus of results among them. Our work, motivated by the lack of comprehensive uncertainty analysis in previous studies, uses a Monte Carlo approach to estimate ranges of expected values of LCA metrics by incorporating parameter variability with empirically specified distribution functions. Results show that large uncertainties exist at virtually all steps of the biofuel production process. Although our findings agree with a number of earlier studies on matters such as the need for wet lipid extraction, nutrients recovered from waste streams, and high energy coproducts, the ranges of reported LCA metrics show that uncertainty analysis is crucial for developing technologies, such as algal biofuels. In addition, the ranges of energy return on (energy) invested (EROI) values resulting from our analysis help explain the high variability in EROI values from earlier studies. Reporting results from LCA models as ranges, and not single values, will more reliably inform industry and policy makers on expected energetic and environmental performance of biofuels produced from microalgae.
Understanding marine regime shifts is important not only for ecology but also for developing marine management that assures the provision of ecosystem services to humanity. While regime shift theory is well developed, there is still no common understanding on drivers, mechanisms and characteristic of abrupt changes in real marine ecosystems. Based on contributions to the present theme issue, we highlight some general issues that need to be overcome for developing a more comprehensive understanding of marine ecosystem regime shifts. We find a great divide between benthic reef and pelagic ocean systems in how regime shift theory is linked to observed abrupt changes. Furthermore, we suggest that the long-lasting discussion on the prevalence of top-down trophic or bottom-up physical drivers in inducing regime shifts may be overcome by taking into consideration the synergistic interactions of multiple stressors, and the special characteristics of different ecosystem types. We present a framework for the holistic investigation of marine regime shifts that considers multiple exogenous drivers that interact with endogenous mechanisms to cause abrupt, catastrophic change. This framework takes into account the time-delayed synergies of these stressors, which erode the resilience of the ecosystem and eventually enable the crossing of ecological thresholds. Finally, considering that increased pressures in the marine environment are predicted by the current climate change assessments, in order to avoid major losses of ecosystem services, we suggest that marine management approaches should incorporate knowledge on environmental thresholds and develop tools that consider regime shift dynamics and characteristics. This grand challenge can only be achieved through a holistic view of marine ecosystem dynamics as evidenced by this theme issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.