Sexual selection has resulted in some of the most captivating features of insects, including flashy colors, bizarre structures, and complex pheromones. These features evolve in dynamic environments, where conditions can change rapidly over space and time. However, only recently has ecological complexity been embraced by theory and practice in sexual selection. We review replicated selection studies as well as studies on variation in the agents of selection to delineate gaps in current knowledge and clarify exciting new directions for research. Existing work suggests that fluctuations in sexual selection may be extremely common, though work on the ecological factors influencing these fluctuations is scarce. We suggest that deeper ecological perspectives on sexual selection may alter some of the fundamental assumptions of sexual selection theory and rapidly lead to new discoveries.
Next‐generation sequencing technologies (NGS) allow systematists to amass a wealth of genomic data from non‐model species for phylogenetic resolution at various temporal scales. However, phylogenetic inference for many lineages dominated by non‐model species has not yet benefited from NGS, which can complement Sanger sequencing studies. One such lineage, whose phylogenetic relationships remain uncertain, is the diverse, agriculturally important and charismatic Coreoidea (Hemiptera: Heteroptera). Given the lack of consensus on higher‐level relationships and the importance of a robust phylogeny for evolutionary hypothesis testing, we use a large data set comprised of hundreds of ultraconserved element (UCE) loci to infer the phylogeny of Coreoidea (excluding Stenocephalidae and Hyocephalidae), with emphasis on the families Coreidae and Alydidae. We generated three data sets by including alignments that contained loci sampled for at least 50%, 60%, or 70% of the total taxa, and inferred phylogeny using maximum likelihood and summary coalescent methods. Twenty‐six external morphological features used in relatively comprehensive phylogenetic analyses of coreoids were also re‐evaluated within our molecular phylogenetic framework. We recovered 439–970 loci per species (16%–36% of loci targeted) and combined this with previously generated UCE data for 12 taxa. All data sets, regardless of analytical approach, yielded topologically similar and strongly supported trees, with the exception of outgroup relationships and the position of Hydarinae. We recovered a monophyletic Coreoidea, with Rhopalidae highly supported as the sister group to Alydidae + Coreidae. Neither Alydidae nor Coreidae were monophyletic; the coreid subfamilies Hydarinae and Pseudophloeinae were recovered as more closely related to Alydidae than to other coreid subfamilies. Coreinae were paraphyletic with respect to Meropachyinae. Most morphological traits were homoplastic with several clades defined by few, if any, synapomorphies. Our results demonstrate the utility of phylogenomic approaches in generating robust hypotheses for taxa with long‐standing phylogenetic problems and highlight that novel insights may come from such approaches.
Sexual selection is often assumed to be strong and consistent, yet increasing research shows it can fluctuate over space and time.Few experimental studies have examined changes in sexual selection in response to natural environmental variation. Here, we use a difference in resource quality to test for the influence of past environmental conditions and current environmental conditions on male and female mate choice and resulting selection gradients for leaf-footed cactus bugs, Narnia femorata. We raised juveniles on natural high-and low-quality diets, cactus pads with and without ripe cactus fruits. New adults were again assigned a cactus pad with or without fruit, paired with a potential mate, and observed for mating behaviors. We found developmental and adult encounter environments affected mating decisions and the resulting patterns of sexual selection for both males and females. Males were not choosy in the low-quality encounter environment, cactus without fruit, but they avoided mating with small females in the high-quality encounter environment. Females were choosy in both encounter environments, avoiding mating with small males. However, they were the choosiest when they were in the low-quality encounter environment. Female mate choice was also context dependent by male developmental environment. Females were more likely to mate with males that had developed on cactus with fruit when they were currently in the cactus with fruit environment. This pattern disappeared when females were in the cactus without fruit environment. Altogether, these results experimentally demonstrate context-dependent mate choice by both males and females. Furthermore, we demonstrate that simple, seasonal changes in resources can lead to fluctuations in sexual selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.