Artificial cells
that encapsulate DNA-programmable protein expression
machinery are emerging as an attractive platform for studying fundamental
cellular properties and applications in synthetic biology. However,
interfacing these artificial cells with the complex and dynamic chemical
environment remains a major and urgent challenge. We demonstrate that
the repertoire of molecules that artificial cells respond to can be
expanded by synthetic RNA-based gene switches, or riboswitches. We
isolated an RNA aptamer that binds histamine with high affinity and
specificity and used it to design robust riboswitches that activate
protein expression in the presence of histamine. Finally, the riboswitches
were incorporated in artificial cells to achieve controlled release
of an encapsulated small molecule and to implement a self-destructive
kill-switch. Synthetic riboswitches should serve as modular and versatile
interfaces to link artificial cell phenotypes with the complex chemical
environment.
Osteoclasts mediate acid dissolution of bone for maintenance of serum [Ca2+] and for replacement of old bone in terrestrial vertebrates. Recent findings point to the importance of intracellular signals, particularly Ca2+, in osteoclast regulation. However, acid degradation of bone mineral subjects the osteoclast to uniquely high extracellular [Ca2+]. We hypothesized that this high calcium environment would affect calcium signalling mechanisms, and studied the calcium binding regulatory protein, calmodulin, in the osteoclast. Avian osteoclast bone resorption was inhibited 30% at 1 microM and 90% at 7 microM by the calmodulin antagonist trifluoperazine. Osteoclast bone attachment was not affected by 10 microM trifluoperazine. Quantitative immunofluorescence using fluorescein-labelled calmodulin monoclonal antibody showed a severalfold increase of calmodulin concentration in bone attached relative to plastic attached osteoclasts. Western blots confirmed this, showing two to threefold increased osteoclast calmodulin per milligram of cell protein in 3-day bone-attached vs. nonattached cells. Scanning confocal microscopy showed calmodulin polarization to areas of bone attachment. Electron micrographs with 9 nm colloidal gold labelling showed calmodulin in the acid secreting ruffled membrane. ATP-dependent acid transport in osteoclast membrane vesicles was inhibited by the calmodulin antagonist calmidazolium. This effect was reversed by addition of excess calmodulin, showing that the inhibition is specific. Vesicle acid transport inhibition reflects an approximately fourfold shift in the apparent Km for ATP of vesicular acid transport in the presence of the calmodulin antagonist. We conclude that calmodulin concentration and distribution is modified by bone attachment, and that osteoclastic acid secretion is calmodulin regulated.
Current therapeutic development in amyotrophic lateral sclerosis (ALS) relies on individual randomized clinical trials to test a specific investigational product in a single patient population. This approach has intrinsic limitations, including cost, time, and lack of flexibility. Adaptive platform trials represent a novel approach to investigate several interventions for a single disease in a continuous manner. Already in use in oncology, this approach is now being employed more often in neurology. Here, we describe a newly launched platform trial for ALS. The Healey ALS Platform Trial is testing multiple investigational products concurrently in people with ALS, with the goal of rapidly identifying novel treatments, biomarkers, and trial endpoints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.