Obtaining precise estimates of quantum observables is a crucial step of variational quantum algorithms. We consider the problem of estimating expectation values of molecular Hamiltonians, obtained on states prepared on a quantum computer. We propose a novel estimator for this task, which is locally optimised with knowledge of the Hamiltonian and a classical approximation to the underlying quantum state. Our estimator is based on the concept of classical shadows of a quantum state, and has the important property of not adding to the circuit depth for the state preparation. We test its performance numerically for molecular Hamiltonians of increasing size, finding a sizable reduction in variance with respect to current measurement protocols that do not increase circuit depths.
Obtaining precise estimates of quantum observables is a crucial step of variational quantum algorithms. We consider the problem of estimating expectation values of quantum Hamiltonians, obtained on states prepared on a quantum computer. We propose a novel estimator for this task, which is locally optimised with knowledge of the Hamiltonian and a classical approximation to the underlying quantum state. Our estimator is based on the concept of classical shadows of a quantum state, and has the important property of not adding to the circuit depth for the state preparation. We test its performance numerically for molecular Hamiltonians of increasing size, finding a sizable reduction in variance with respect to current measurement protocols that do not increase circuit depths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.