We developed a fiber-coupled superconducting nanowire single-photon detector system in a close-cycled cryocooler and achieved 24% and 22% system detection efficiencies at wavelengths of 1550 and 1315 nm, respectively. The maximum dark count rate was approximately 1000 counts/s.
Electron affinities, Ea, E1 and A1 are reported for the 12 primary X, A–K (27 spin) states of O2(−): KeqT3/2 = (SanQan)(2πmek/h2)3/2exp(Ea/RT); k1 = A1T−1/2exp(−E1/RT). These are obtained from pulsed discharge electron capture detector data by rigorously including literature values and uncertainties in a global non-linear least-squares adjustment. Simple molecular orbital theory predicts 27 bonding and 27 anti-bonding low-lying spin states. For the first time, the positive Ea for the 27 bonding states are reported. The partition function ratios of the negative ion and neutral (SanQan), the A1(X–E) and the spin separations are from fundamental constants. The Ea (in eV) are as follows (with the spin states in brackets): [1.050, 1.070]; [0.915, 0.935]; [0.698, 0.718, 0.746, 0.782]; [0.734, 0.754]; [0.559, 0.587]; 0.518; [0.430, 0.450]; 0.380; 0.354; [0.286, 0.298, 0.318, 0.346]; [0.232, 0.252]; [0.172, 0.184, 0.204, 0.232]. The activation energies (in eV) are as follows: E1(X–C) 1.0; E1(D,E) 1.0, 0.8, 0.6; E1(F–K) 0.12–0.08. The Ea and E1 are used to calculate bonding Herschbach ionic Morse–Person empirical curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.