Earnings nonresponse in household surveys is widespread, yet there is limited knowledge of how nonresponse biases earnings measures. We examine the consequences of nonresponse on earnings gaps and inequality using Current Population Survey individual records linked to administrative earnings data. The common assumption that earnings are missing at random is rejected. Nonresponse across the earnings distribution is U-shaped, highest in the left and right tails. Inequality measures differ between household and administrative data due in part to nonresponse. Nonresponse biases earnings differentials by race, gender, and education, particularly in the tails. Flexible copula-based models can account for nonrandom nonresponse.
Earnings nonresponse in household surveys is widespread, yet there is limited knowledge of how nonresponse biases earnings measures. We examine the consequences of nonresponse on earnings gaps and inequality using Current Population Survey individual records linked to administrative earnings data. The common assumption that earnings are missing at random is rejected. Nonresponse across the earnings distribution is U-shaped, highest in the left and right tails. Inequality measures differ between household and administrative data due in part to nonresponse. Nonresponse biases earnings differentials by race, gender, and education, particularly in the tails. Flexible copula-based models can account for nonrandom nonresponse.
We use new PSID data on consumption and health, along with information on annual sick time, to estimate a structural labor supply model that incorporates a health capital stock with the traditional human capital learning-by-doing model. The estimates show strong evidence of learning by doing as well as strong persistence in health. However, the estimates reveal that time and money seem to have little effect on health consistent with 'flat of the curve' medicine. We find strong evidence that consumption and leisure are direct substitutes in preferences, and consumption and leisure are each utility complements with good health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.