In this contribution, a new dissolved gas analysis (DGA) method combining key gases and ratio approaches for power transformer fault diagnostic is presented. It is based on studying subsets and uses the five main hydrocarbon gases including hydrogen (H 2 ), methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), and acetylene (C 2 H 2 ). The proposed method uses 475 samples from the dataset divided into subsets formed from the maximum and minimum(s) concentrations of the whole dataset. It has been tested on 117 DGA sample data and validated on the International Electrotechnical Commission (IEC) TC10 database. The performance of the proposed diagnostic method was evaluated and compared with the following diagnostic methods: IEC ratios method, Duval's triangle (DT), three ratios technique (TRT), Gouda's triangle (GT), and self-organizing map (SOM) clusters. The results found were analysed by computer simulations using MATLAB software. The proposed method has a diagnosis accuracy of 97.42% for fault types, as compared to 93.16% of TRT, 96.58% of GT method, 97.25% of SOM clusters method and 98.29% of DT method. However, in terms of fault severity, the proposed method has a diagnostic accuracy of 90.59% as compared to 78.90% of SOM clusters method, 83.76% of TRT, 88.03% of DT method, and 89.74% of GT method.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
This paper is in the field of electric power quality monitoring and presents a new approach for the identification, classification and characterization of the nine voltage dips and swells in electricity networks. The proposed method is based on the study in the complex plane of the signatures of the different voltage dips and swells. In the study of these signatures, the elements taken into account are the root mean square (RMS) values of the phases, the existence or not of an additional phase shift of the voltages and their rotation sense. The informations obtained are synthesized in three variables, and used to the implementation of the method. The results found by the computer simulations carried out by the MATLAB/Simulink software show that the proposed approach uses few parameters, is easy to implement and understand, and makes it possible to efficiently detect, classify and characterize the nine voltage dips and swells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.