Onsite wastewater treatment systems (OWTS) can contribute nitrogen (N) to coastal waters. In coastal areas with shallow groundwater, OWTS are likely affected by meteorological events. However, the meteorological influences on temporal variability of N exports from OWTS are not well documented. Hydrogeological characterization and seasonal monitoring of wastewater and groundwater quality were conducted at a residence adjacent to the Pamlico River Estuary, North Carolina during a two-year field study (October 2009–2011). Rainfall was elevated during the first study year, relative to the annual mean. In the second year, drought was followed by extreme precipitation from Hurricane Irene. Recent meteorological conditions influenced N speciation and concentrations in groundwater. Groundwater total dissolved nitrogen (TDN) beneath the OWTS drainfield was dominated by nitrate during the drought; during wetter periods ammonium and organic N were common. Effective precipitation (P-ET) affected OWTS TDN exports because of its influence on groundwater recharge and discharge. Groundwater nitrate-N concentrations beneath the drainfield were typically higher than 10 mg/l when total bi-weekly precipitation was less than evapotranspiration (precipitation deficit: P15 m downgradient of the drainfield. Although OWTS nitrate inputs caused elevated groundwater nitrate concentrations between the drainfield and the estuary, the majority of nitrate was attenuated via denitrification between the OWTS and 48 m to the estuary. However, DON originating from the OWTS was mobile and contributed to elevated TDN concentrations along the groundwater flowpath to the estuary.
The goal of this study was to evaluate the influence of soil type and separation distance to water table on dissolved inorganic nitrogen concentrations in groundwater adjacent to on-site wastewater systems. Groundwater nitrogen species (NO3--N and NH4+-N) and groundwater levels adjacent to 16 on-site systems in three different soil groups (group I- sand, group II- coarse loams and group III -sandy clay loams) were monitored for 15 months (January 2007-March 2008) in coastal North Carolina. On-site systems in soil group I had the highest concentrations of dissolved inorganic nitrogen (median of 18.9 mg/L) in groundwater, and most frequently (mean 61%) exceeded 10 mg/L, followed by systems in soil group II (11.0 mg/L, 50%) and soil group III (2.6 mg/L, 9%), respectively. Groundwater NH4+-N concentrations near on-site systems in soil groups I and II that maintained a 60+cm separation to the seasonal high water table were 4 mg/L lower in relation to systems that had <60 cm separation, but median NO3--N concentrations were 6.5 mg/L higher. On-site systems in group I and II soils are prone to groundwater nitrogen loading with separation distance often controlling the nitrogen speciation in groundwater near on-site systems.
On-site wastewater treatment systems (OWS) are a potentially significant non-point source of nutrients to groundwater and surface waters, and are extensively used in coastal North Carolina. The goal of this study was to determine the treatment efficiency of four OWS in reducing total dissolved nitrogen (TDN) and dissolved organic carbon (DOC) concentrations before discharge to groundwater and/or adjacent surface water. Piezometers were installed for groundwater sample collection and nutrient analysis at four separate residences that use OWS. Septic tank effluent, groundwater, and surface water samples (from an adjacent stream) were collected four times during 2012 for TDN and DOC analysis and pH, temperature, electrical conductivity, and dissolved oxygen measurements. Treatment efficiencies from the tank to the groundwater beneath the drainfields ranged from 33 to 95% for TDN and 45 to 82% for DOC, although dilution accounted for most of the concentration reductions. There was a significant positive correlation between nitrate concentration and separation distance from trench bottom to water table and a significant negative correlation between DOC concentration and separation distance. The TDN and DOC transport (>15 m) from two OWS with groundwater saturated drainfield trenches was significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.