Poor soil chemical fertility and climate change restrict pearl millet grain yield in Niger Republic. Apart from the seedball technology, which targets majorly early phosphorus supply to the plants, the recommended practices of mineral fertilization and seed treatments (coating and priming) are barely affordable to the local farmers in particular. In the case of female farmers, who usually have chemically infertile farmlands often located far away from their homestead, low pearl millet grain yield can be exacerbated. In quest for a cheap, affordable, and effective solution, we hypothesized that the application of sanitized human urine (Oga), in combination with organic manure (OM) or solely, increases pearl millet panicle yield in women’s fields and on different local soils. In on-farm large-N trials (N = 681) with women farmers in two regions of Niger (Maradi, Tillabery), pearl millet panicle yields were compared between the control (farmer practice), and a combination of Oga and OM in the first and second year, and Oga alone in the third year. Our results showed an average panicle yield increase of about +30%, representing +200 to +300 kg ha−1. Major factors determining the yield effect are season, village, and local soil type. This study shows for the first time that Oga innovation can be used to increase pearl millet panicle yield particularly in the low fertile soils of women’s farmlands in Niger. Oga innovation is affordable, locally available, and does not pose a risk to resource-poor female farmers of Niger.
Seedball is a cheap “seed‐pelleting‐technique” that combines local materials, seeds and optionally additives such as mineral fertilizer to enhance pearl millet (Pennisetum glaucum (L.) R. Brown) early growth under poor soil conditions. The major objective here was to study the mechanisms behind positive seedball effects. Chemical effects in the rhizosphere and early root development of seedball‐derived pearl millet seedlings were monitored using micro‐suction‐cups to extract soil solutions and X‐ray tomography to visualize early root growth. Pearl millet (single seedling) was grown in soil columns in a sandy soil substrate. Root and shoot biomass were sampled. X‐ray tomography imaging revealed intense development of fine roots within the nutrient‐amended seedball. Seedball and seedball+NPK treatments, respectively, were 65% and 165% higher in shoot fresh weight, and 108% and 227% higher in shoot dry matter than the control treatment. Seedball+NPK seedlings showed promoted root growth in the upper compartment and 105% and 30% increments in root fresh and dry weights. Soil solution concentrations indicate that fine root growth ass stimulated by release of nutrients from the seedballs to their direct proximity. Under real field conditions, the higher root length density and finer roots could improve seedlings survival under early drought conditions due to better ability to extract water and nutrients from a greater soil volume.
Pearl millet (Pennisetum glaucum (L.) R.Br.) is the major staple crop produced by subsistence farmers in the West African Sahel, but its panicle yield is low because of poor seedling establishment in low-nutrient soils. Seedball is a cheap seed-pelleting technique that combines sand, loam, seeds and optionally wood ash or mineral fertiliser as an additive to enhance early growth of pearl millet under infertile soil conditions. The aim of this study was to investigate the effects of seedball technology on pearl millet crop establishment and panicle yield on-farm under Sahelian subsistence conditions. Over 2000 on-farm (2015–18) trials were conducted in 65 villages of the Maradi region in Niger. Conventionally sown and seedball-derived pearl millet crops were grown by using ‘farmer-optimised’ simple split-plot designs with three treatments: (i) farmers’ practice as control; and seedballs (2.0 cm diameter, made from 80 g sand + 50 g loam + 25 mL water + 2.5 g seeds as standard recipe) that contained either (ii) 3 g wood ash or (iii) 1 g mineral fertiliser (nitrogen, phosphorus, potassium; NPK) as effective nutrient compounds. In 2016–18, participating farmers could opt for one of the seedball treatments. Panicle as well as stover yield data were collected and compared with respect to seedball type (wood ash vs NPK), sowing depth (shallow vs deep), sowing time (wet vs dry), weed management (complete vs partial), local soil type (texture range sand to loamy sand), cropping system (sole vs mixed), and farmer. Results showed that seedballs do not suppress seedling emergence. Seedball treatments produced fewer but longer and denser panicles. Wood ash-amended seedballs showed a higher panicle yield increase relative to their site controls than NPK-amended seedballs. However, the average panicle yield of NPK-amended seedballs was higher than that of the wood ash-amended seedballs. The treatment factors wet sowing, partial weeding, sole cropping and farmers showed higher panicle yield. The seedball technology increases pearl millet panicle yield by ∼30% in the Sahel; it is simple and based on local materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.