Proneural genes such as Ascl1 are known to promote cell cycle exit and neuronal differentiation when expressed in neural progenitor cells. The mechanisms by which proneural genes activate neurogenesis-and, in particular, the genes that they regulate-however, are mostly unknown. We performed a genome-wide characterization of the transcriptional targets of Ascl1 in the embryonic brain and in neural stem cell cultures by location analysis and expression profiling of embryos overexpressing or mutant for Ascl1. The wide range of molecular and cellular functions represented among these targets suggests that Ascl1 directly controls the specification of neural progenitors as well as the later steps of neuronal differentiation and neurite outgrowth. Surprisingly, Ascl1 also regulates the expression of a large number of genes involved in cell cycle progression, including canonical cell cycle regulators and oncogenic transcription factors. Mutational analysis in the embryonic brain and manipulation of Ascl1 activity in neural stem cell cultures revealed that Ascl1 is indeed required for normal proliferation of neural progenitors. This study identified a novel and unexpected activity of the proneural gene Ascl1, and revealed a direct molecular link between the phase of expansion of neural progenitors and the subsequent phases of cell cycle exit and neuronal differentiation.
Proneural proteins play a central role in vertebrate neurogenesis, but little is known of the genes that they regulate and of the factors that interact with proneural proteins to activate a neurogenic program. Here, we demonstrate that the proneural protein Mash1 and the POU proteins Brn1 and Brn2 interact on the promoter of the Notch ligand Delta1 and synergistically activate Delta1 transcription, a key step in neurogenesis. Overexpression experiments in vivo indicate that Brn2, like Mash1, regulates additional aspects of neurogenesis, including the division of progenitors and the differentiation and migration of neurons. We identify by in silico screening a number of additional candidate target genes, which are recognized by Mash1 and Brn proteins through a DNA-binding motif similar to that found in the Delta1 gene and present a broad range of activities. We thus propose that Mash1 synergizes with Brn factors to regulate multiple steps of neurogenesis.
Quiescence is essential for long-term maintenance of adult stem cells. Niche signals regulate the transit of stem cells from dormant to activated states. Here we show that the E3-ubiquitin ligase Huwe1 (HECT, UBA and WWE domain containing 1) is required for proliferating stem cells of the adult mouse hippocampus to return to quiescence. Huwe1 destabilises pro-activation protein Ascl1 (achaete-scute family bHLH transcription factor 1) in proliferating hippocampal stem cells, which prevents accumulation of cyclin Ds and promotes the return to a resting state. When stem cells fail to return to quiescence, the proliferative stem cell pool becomes depleted. Thus, longterm maintenance of hippocampal neurogenesis depends on the return of stem cells to a transient quiescent state through the rapid degradation of a key activation factor.Stem cells contribute to tissue homeostasis by generating new differentiated cells. Adult stem cells can enter a reversible state of quiescence that protects the cells from damage and the population from depletion. Niche signals determine the balance between quiescent and activated states. Excessive quiescence leads to too few differentiated progeny whereas excessive proliferation exhausts the stem cell population (1).Neural stem cells (NSCs) in the dentate gyrus (DG) of the mouse hippocampus generate new granule neurons that integrate into the hippocampal circuit to modulate mood and memory (2, 3). Niche signals control expression of the transcription factor Ascl1 (achaete-scute family bHLH transcription factor 1), which in turn directs NSC proliferation (4). To identify factors that regulate Ascl1, we characterized proteins that co-immunoprecipitate with Ascl1 in cultured murine NSCs using mass spectrometry. We found that Huwe1 (HECT, UBA and WWE domain containing 1), a HECT domain E3 ubiquitin ligase associated with idiopathic intellectual disability and schizophrenia (5, 6), interacts with Ascl1 (Fig. S1). We generated embryonic telencephalon-and adult hippocampus-derived NSCs in which Huwe1 is
Stem cells have been used in a clinical setting for many years. Haematopoietic stem cells have been used for the treatment of both haematological and non-haematological disease; while more recently mesenchymal stem cells derived from bone marrow have been the subject of both laboratory and early clinical studies. Whilst these cells show both multipotency and expansion potential, they nonetheless do not form stable cell lines in culture which is likely to limit the breadth of their application in the field of regenerative medicine. Human embryonic stem cells are pluripotent cells, capable of forming stable cell lines which retain the capacity to differentiate into cells from all three germ layers. This makes them of special significance in both regenerative medicine and toxicology. Induced pluripotent stem (iPS) cells may also provide a similar breadth of utility without some of the confounding ethical issues surrounding embryonic stem cells. An essential pre-requisite to the commercial and clinical application of stem cells are suitable cryopreservation protocols for long-term storage. Whilst effective methods for cryopreservation and storage have been developed for haematopoietic and mesenchymal stem cells, embryonic cells and iPS cells have proved more refractory. This paper reviews the current state of cryopreservation as it pertains to stem cells and in particular the embryonic and iPS cell.
The bHLH (basic helix-loop-helix) transcription factor Mash1 is best known for its role in the regulation of neurogenesis. However, Mash1 is also expressed in oligodendrocyte precursors and has recently been shown to promote the generation of oligodendrocytes in cell culture, suggesting that it may regulate oligodendrogenesis as well. Here, we show that in the developing ventral forebrain, Mash1 is expressed by a subset of oligodendrocyte precursors (OPCs) as soon as they are generated in the ventricular zone. Using reporter mice, we demonstrate that a subset of OPCs in both the embryonic and postnatal forebrain originate from Mash1-positive progenitors, including a large fraction of adult NG2-positive OPCs. Using Mash1 null mutant mice, we show that Mash1 is required for the generation of an early population of OPCs in the ventral forebrain between embryonic day 11.5 (E11.5) and E13.5, whereas OPCs generated later in embryonic development are not affected. Overexpression of Mash1 in the dorsal telencephalon induces expression of PDGFR␣ (platelet-derived growth factor receptor alpha) but not other OPC markers, suggesting that Mash1specifies oligodendrogenesis in cooperation with other factors. Analysis of double-mutant mice suggests that Olig2 is one of the factors that cooperate with Mash1 for generation of OPCs. Together, our results show for the first time that Mash1 cooperates in vivo with Olig2 in oligodendrocyte specification, demonstrating an essential role for Mash1 in the generation of a subset of oligodendrocytes and revealing a genetic heterogeneity of oligodendrocyte lineages in the mouse forebrain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.