The survival of a species depends on its capacity to adjust to changing environmental conditions, and new stressors. Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera). The low-dose effects of these compounds on larval development and physiological responses have remained largely unknown. Over a period of 15 days, we provided syrup tainted with low levels (2 µg/L−1) of the neonicotinoid insecticide imidacloprid to beehives located in the field. We measured transcript levels by RNA sequencing and established lipid profiles using liquid chromatography coupled with mass spectrometry from worker-bee larvae of imidacloprid-exposed (IE) and unexposed, control (C) hives. Within a catalogue of 300 differentially expressed transcripts in larvae from IE hives, we detect significant enrichment of genes functioning in lipid-carbohydrate-mitochondrial metabolic networks. Myc-involved transcriptional response to exposure of this neonicotinoid is indicated by overrepresentation of E-box elements in the promoter regions of genes with altered expression. RNA levels for a cluster of genes encoding detoxifying P450 enzymes are elevated, with coordinated downregulation of genes in glycolytic and sugar-metabolising pathways. Expression of the environmentally responsive Hsp90 gene is also reduced, suggesting diminished buffering and stability of the developmental program. The multifaceted, physiological response described here may be of importance to our general understanding of pollinator health. Muscles, for instance, work at high glycolytic rates and flight performance could be impacted should low levels of this evolutionarily novel stressor likewise induce downregulation of energy metabolising genes in adult pollinators.
Severe iodine deficiency in mothers is known to impair foetal development. Pregnant women in the UK may be iodine insufficient, but recent assessments of iodine status are limited. This study assessed maternal urinary iodine concentrations (UIC) and birth outcomes in three UK cities. Spot urines were collected from 541 women in London, Manchester and Leeds from 2004–2008 as part of the Screening for Pregnancy End points (SCOPE) study. UIC at 15 and 20 weeks’ gestation was estimated using inductively coupled plasma-mass spectrometry (ICP-MS). Associations were estimated between iodine status (UIC and iodine-to-creatinine ratio) and birth weight, birth weight centile (primary outcome), small for gestational age (SGA) and spontaneous preterm birth. Median UIC was highest in Manchester (139 μg/L, 95% confidence intervals (CI): 126, 158) and London (130 μg/L, 95% CI: 114, 177) and lowest in Leeds (116 μg/L, 95% CI: 99, 135), but the proportion with UIC <50 µg/L was <20% in all three cities. No evidence of an association was observed between UIC and birth weight centile (−0.2% per 50 μg/L increase in UIC, 95% CI: −1.3, 0.8), nor with odds of spontaneous preterm birth (odds ratio = 1.00, 95% CI: 0.84, 1.20). Given the finding of iodine concentrations being insufficient according to World Health Organization (WHO) guidelines amongst pregnant women across all three cities, further studies may be needed to explore implications for maternal thyroid function and longer-term child health outcomes.
Metabolomic analyses can reveal associations between an organism's metabolome and further aspects of its phenotypic state, an attractive prospect for many life‐sciences researchers. The metabolomic approach has been employed in some, but not many, insect study systems, starting in 1990 with the evaluation of the metabolic effects of parasitism on moth larvae. Metabolomics has now been applied to a variety of aspects of insect biology, including behaviour, infection, temperature stress responses, 2 sedation, and bacteria–insect symbiosis. From a technical and reporting standpoint, these studies have adopted a range of approaches utilising established experimental methodologies. Here, we review current literature and evaluate the metabolomic approaches typically utilised by entomologists. We suggest that improvements can be made in several areas, including sampling procedures, the reduction in sampling and equipment variation, the use of sample extracts, statistical analyses, confirmation, and metabolite identification. Overall, it is clear that metabolomics can identify correlations between phenotypic states and underlying cellular metabolism that previous, more targeted, approaches are incapable of measuring. The unique combination of untargeted global analyses with high‐resolution quantitative analyses results in a tool with great potential for future entomological investigations.
Background Maternal iodine requirements increase during pregnancy to supply thyroid hormones critical for fetal neurodevelopment. Iodine insufficiency may result in poorer cognitive or child educational outcomes but current evidence is sparse and inconsistent. Objectives To quantify the association between maternal iodine status and child educational outcomes. Methods Urinary iodine concentrations (UIC) and iodine/creatinine ratios (I:Cr) were measured in 6971 mothers at 26‐28 weeks' gestation participating in the Born in Bradford cohort. Maternal iodine status was examined in relation to child school achievement (early years foundation stage (EYFS), phonics, and Key Stage 1 (KS1)), other learning outcomes, social and behavioural difficulties, and sensorimotor control in 5745 children aged 4‐7 years. Results Median (interquartile range) UIC was 76 µg/L (46, 120), and I:Cr was 83 µg/g (59, 121). Overall, there was no strong or consistent evidence to support associations between UIC or I:Cr and neurodevelopmental outcomes. For instance, predicted EYFS and phonics scores (primary outcomes) at the 25th vs 75th I:Cr percentiles (99% confidence intervals) were similar, with no evidence of associations: EYFS scores were 32 (99% CI 31, 33) and 33 (99% CI 32, 34), and phonics scores were 34 (99% CI 33, 35) and 35 (99% CI 34, 36), respectively. Conclusions In the largest single study of its kind, there was little evidence of detrimental neurodevelopmental outcomes in children born to pregnant women with iodine insufficiency as defined by World Health Organization–outlined thresholds. Alternative functional biomarkers for iodine status in pregnancy and focused assessment of other health outcomes may provide additional insight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.