The synthesis and characterization of the first catalytic manganese N-heterocyclic carbene complexes are reported: MnBr(N-methyl-N'-2-pyridylbenzimidazol-2-ylidine)(CO)3 and MnBr(N-methyl-N'-2-pyridylimidazol-2-ylidine)(CO)3. Both new species mediate the reduction of CO2 to CO following two-electron reduction of the Mn(I) center, as observed with preparative scale electrolysis and verified with (13)CO2. The two-electron reduction of these species occurs at a single potential, rather than in two sequential steps separated by hundreds of millivolts, as is the case for previously reported MnBr(2,2'-bipyridine)(CO)3. Catalytic current enhancement is observed at voltages similar to MnBr(2,2'-bipyridine)(CO)3.
The modular construction of ligands around an N-heterocyclic carbene building block represents a flexible synthetic strategy for tuning the electronic properties of metal complexes. Herein, methylbenzimidazolium-pyridine and methylbenzimidazolium-pyrimidine proligands are constructed in high yield using recently established transition-metal-free techniques. Subsequent chelation to ReCl(CO)5 furnishes ReCl(N-methyl-N'-2-pyridylbenzimidazol-2-ylidine)(CO)3 and ReCl(N-methyl-N'-2-pyrimidylbenzimidazol-2-ylidine)(CO)3. These Re(I) NHC complexes are shown to be capable of mediating the two-electron conversion of CO2 following one-electron reduction; the Faradaic efficiency for CO formation is observed to be >60% with minor H2 and HCO2H production. Data from cyclic voltammetry is presented and compared to well-studied ReCl(2,2'-bipyridine)(CO)3 and MnBr(2,2'-bipyridine)(CO)3 systems. Results from density functional theory computations, infrared spectroelectrochemistry, and chemical reductions are also discussed.
The synthesis, electrochemical activity, and relative photodecomposition rate is reported for four new Mn(i) N-heterocyclic carbene complexes: [MnX(N-ethyl-N'-2-pyridylimidazol-2-ylidine)(CO)3] (X = Br, NCS, CN) and [MnCN(N-ethyl-N'-2-pyridylbenzimidazol-2-ylidine)(CO)3]. All compounds display an electrocatalytic current enhancement under CO2 at the potential of the first reduction, which ranges from -1.53 V to -1.96 V versus the saturated calomel electrode. Catalytic CO production is observed for all species during four-hour preparative-scale electrolysis, but substantial H2 is detected in compounds where X is not Br. All species eventually decompose under both 350 nm and 420 nm light, but cyanide substituted complexes (X = CN) last significantly longer (up to 5×) under 420 nm light as a result of a blue-shifted MLCT band.
MnBr(2,2'-bipyridine)(CO)3 is an efficient and selective electrocatalyst for the conversion of CO2 to CO. Herein, substitution of the axial bromide for a pseudohalogen (CN) is investigated, yielding Mn(CN)(2,2'-bipyridine)(CO)3. This replacement shifts the first and second reductions to more negative potentials (-1.94 and -2.51 V vs Fc/Fc(+), respectively), but imparts quasi-reversibility at the first feature. The two-electron, two-proton reduction of CO2 to CO and H2O is observed at the potential of the first reduction. Data from IR spectroelectrochemistry, cyclic voltammetry, and controlled potential electrolysis indicate that this behavior arises from the disproportionation of two one-electron-reduced species to generate the catalytically active species. Computations using density functional theory are also presented in support of this new mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.