Si-nanosheets (Si-NSs) have recently attracted considerable attention due to their potential as nextgeneration materials for electronic, optoelectronic, spintronic, and catalytic applications. Even though monolayer Si-NSs were first synthesized over 150 years ago via topotactic deintercalation of CaSi2, there is a lack of consensus within the literature regarding the structure and optical properties of this material. Herein, we provide conclusive evidence of the structural and chemical properties of Si-NSs produced by the deintercalation of CaSi2 with cold (~-30 °C) aqueous HCl, and characterize their optical properties. We use a wide range of techniques, including XRD, FTIR, Raman, solid-state NMR, SEM, TEM, EDS, XPS, diffuse reflectance absorbance, steady-state photoluminescence, time-resolved photoluminescence, and thermal decomposition; combined together, these techniques enable unique insight into the structural and optical properties of the Si-NSs. Additionally, we support the experimental findings with density functional theory (DFT) calculations to simulate FTIR, Raman, NMR, interband electronic transitions, and band structures. We determined that the Si-NSs consist of buckled Si monolayers that are primarily monohydride terminated. We characterize the nanosheets' optical properties, finding they have a band gap of ~2.5 eV with direct-like behavior and an estimated quantum yield of ~9%. Given the technological importance of Si, these results are encouraging for a variety of optoelectronic technologies, such as phosphors, light-emitting diodes, and CMOS-compatible photonics. Our results provide critical structural and optical properties to help guide the research community in integrating Si-NSs into optoelectronic and quantum devices. Disciplines Disciplines Materials Chemistry Comments Comments
The gold-sulfur (Au-S) and silver-sulfur (Ag-S) bonds are integral to the surface modification of metal films with alkanethiol monolayers. Although the metal-sulfur bond can be characterized with surface-enhanced Raman spectroscopy (SERS) at roughened metal films, some applications require or perform better when using a smooth metal surface, which is not suitable for SERS signal enhancement. Directional-surface-plasmon-coupled Raman scattering (directional Raman scattering) is an approach to measure metal-sulfur bonds on smooth metal films with sub-monolayer sensitivity. The metal-sulfur bonds formed from a benzenethiol monolayer on smooth planar gold or silver films are observed in the directional Raman scattering spectra between 240 and 270 cm À1 ; the signal-to-noise ratio of the Au-S Raman peak is 60. Importantly, the directional Raman scattering signal measured with smooth metal surfaces can be simply modeled and easily compared across many samples. Directional Raman scattering can also be measured at roughened metal films, which makes it applicable for many analyses.
Directional-surface-plasmon-coupled Raman scattering (directional RS) has the combined benefits of surface plasmon resonance and Raman spectroscopy, and provides the ability to measure adsorption and monolayer-sensitive chemical information. Directional RS is performed by optically coupling a 50 nm gold film to a Weierstrass prism in the Kretschmann configuration and scanning the angle of the incident laser under total internal reflection. The collected parameters on the prism side of the interface include a full surface-plasmon-polariton cone and the full Raman signal radiating from the cone as a function of incident angle. An instrument for performing directional RS and a quantitative study of the instrumental parameters are herein reported. To test the sensitivity and quantify the instrument parameters, self-assembled monolayers and 10 to 100 nm polymer films are studied. The signals are found to be well-modeled by two calculated angle-dependent parameters: three-dimensional finite-difference time-domain calculations of the electric field generated in the sample layer and projected to the far-field, and Fresnel calculations of the reflected light intensity. This is the first report of the quantitative study of the full surface-plasmon-polariton cone intensity, cone diameter, and directional Raman signal as a function of incident angle. We propose that directional RS is a viable alternative to surface plasmon resonance when added chemical information is beneficial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.