Peptoids, oligomers ofN-substituted glycines, are described as a motif for the generation ofchemically diverse libraries of novel molecules. Ramachandran-type plots were calculated and indicate a greater diversity of conformational states available for peptoids than for peptides. The monomers incorporate t-butyl-based side-chain and 9-fluorenylmethoxycarbonyl a-amine protection. The controlled oligomerization of the peptoid monomers was performed manually and robotically with in situ activation by either benzotriazol-lyloxytris(pyrrolidino)phosphonium hexafluorophosphate or bromotris(pyrrolidino)phosphonium hexafluorophosphate. Other steps were identical to peptide synthesis using a-(9-fluorenylmethoxycarbonyl)amino acids. A total of 15 monomers and 10 oligomers (peptoids) are described. Preliminary data are presented on the stability of a representative oligopeptoid to enzymatic hydrolysis. Peptoid versions of peptide ligands of three biological systems (bovine pancreatic a-amylase, hepatitis A virus 3C proteinase, and human immunodeficiency virus transactivator-responsive element RNA) were found with affinities comparable to those of the corresponding peptides. The potential use of libraries of these compounds in receptor-or enzyme-based assays is discussed.Broad screening of compound libraries, of broths grown from soil samples, and of synthetic intermediates has been a fruitful method for discovery of lead compounds in pharmaceutical and agrochemical research (e.g., ref. 1). With the advent of automated chemical methods for solid-phase peptide and nucleotide synthesis, and of molecular biological methods for protein and nucleic acid synthesis, the stage has been set for the generation of new kinds of compound libraries, namely, collections of oligomeric biomolecules (2-14). Such libraries have been used to map epitopes for antibody binding, to discern ribonucleotide sequences with specific binding or catalytic activity, and to provide initial leads in receptor-based assays. Advantages of these oligomeric molecules are an almost limitless diversity as a result of their modular structure, the ease with which they can be synthesized and sequenced, and their inherent biological relevance. On the other hand, the metabolic instability of peptides and nucleotides and their poor absorption characteristics mean that any lead sequence will require extensive modification before in vivo activity can be expected.Many of these problems could be avoided if an alternative, modular system was devised, with a basis set of "unnatural" monomers and a method for their controlled oligomerization. A host of chemically and pharmaceutically interesting subunits or modules would generate a diverse and novel set of heteropolymers. Once an interesting compound has been identified from a library of such nonpeptide polymers, it can serve as a lead for drug discovery, further along the road to a metabolically stable drug. Optimized analogs of a lead compound could then be developed rapidly due to the modular synthetic nature of th...
Six phosphorus-containing peptide analogues of the form Cbz-NHCH2PO2--L-Leu-Y (Y = D-Ala, NH2, Gly, L-Phe, L-Ala, L-Leu) have been prepared and evaluated as inhibitors of thermolysin. The Ki values for these compounds range from 1.7 microM to 9.1 nM and correlate well with the Km/kcat values for the corresponding peptide substrates [Morihara, K., & Tsuzuki, H. (1970) Eur. J. Biochem. 15, 374-380] but not with the Km values alone. The correlation noted between inhibitor Ki and substrate Km/kcat is the most extensive one of this type, providing strong evidence that the phosphonamidates are transition-state analogues and not simply multisubstrate ground-state analogues. Cbz-NH2CH2PO2--L-Leu-L-Leu (Ki = 9.1 nM) is the most potent inhibitor yet reported for thermolysin.
This and two accompanying reports describe the intrinsic binding energy derived from a single hydrogen bond between an inhibitor and an enzyme. The results were obtained by comparing matched pairs of inhibitors of the zinc endopeptidase thermolysin that bind to the enzyme in an essentially identical manner but differ in the presence or absence of a specific hydrogen bond. This report describes five phosphorus-containing analogs of the peptides carbobenzoxy-Gly-Leu-X, in which the Gly-Leu peptide linkage is replaced with a phosphonate ester (-PO2(-)-O-). Values for the inhibition constants of these inhibitors show a direct relation with those of the corresponding phosphonamidate analogs (-PO2(-)-NH- in place of the Gly-Leu peptide moiety), which have been characterized previously as transition state analogs. However, each phosphonate ester is bound about 840 times more weakly than the analogous phosphonamidate, reflecting the loss of 4.0 +/- 0.1 kilocalories per mole in binding energy. From these results and the crystallographic analysis in the next report, it can be inferred that the value of 4.0 kilocalories per mole represents the intrinsic binding energy arising from a highly specific hydrogen binding interaction.
A number of phosphonamidate and phosphonate tripeptide analogues have been studied as transition-state-analogue inhibitors of the zinc endopeptidase thermolysin. Those with the form Cbz-GlyP(Y)Leu-X [ZGP(Y)LX, X = NH2 or amino acid, Y = NH or O linkage] are potent (Ki = 9-760 nM for X = NH, 9-660 microM for X = O) but otherwise ordinary in their binding behavior, with second-order rate constants for association (kon) greater than 10(5) M-1 s-1. Those with the form Cbz-XP(Y)-Leu-Ala [ZXP(Y)LA,XP = alpha-substituted phosphorus amino acid analogue] are similarly potent (Ki for ZFPLA = 68 pM) but slow binding (kon less than or equal to 1300 M-1 s-1). Several kinetic mechanisms for slow binding behavior are considered, including two-step processes and those that require prior isomerization of inhibitor or enzyme to a rare form. The association rates of ZFPLA and ZFP(O)LA are first order in inhibitor concentration up to 1-2 mM, indicating that any loose complex along the binding pathway must have a dissociation constant above this value. The crystallographic investigation described in the preceding paper [Holden, H. M., Tronrud, D. E., Monzingo, A. F., Weaver, L. H., & Matthews, B. W. (1987) Biochemistry (preceding paper in this issue)] identifies a specific water molecule in the active site that may hinder binding of the alpha-substituted inhibitors. The implication of this observation for a mechanism for slow binding is discussed.
Dysregulation of PI3K/PTEN pathway components, resulting in hyperactivated PI3K signaling, is frequently observed in various cancers and correlates with tumor growth and survival. Resistance to a variety of anticancer therapies, including receptor tyrosine kinase (RTK) inhibitors and chemotherapeutic agents, has been attributed to the absence or attenuation of downregulating signals along the PI3K/PTEN pathway. Thus, PI3K inhibitors have therapeutic potential as single agents and in combination with other therapies for a variety of cancer indications. XL147 (SAR245408) is a potent and highly selective inhibitor of class I PI3Ks (a, b, g, and d). Moreover, broad kinase selectivity profiling of >130 protein kinases revealed that XL147 is highly selective for class I PI3Ks over other kinases. In cellular assays, XL147 inhibits the formation of PIP 3 in the membrane, and inhibits phosphorylation of AKT, p70S6K, and S6 in multiple tumor cell lines with diverse genetic alterations affecting the PI3K pathway. In a panel of tumor cell lines, XL147 inhibits proliferation with a wide range of potencies, with evidence of an impact of genotype on sensitivity. In mouse xenograft models, oral administration of XL147 results in dose-dependent inhibition of phosphorylation of AKT, p70S6K, and S6 with a duration of action of at least 24 hours. Repeat-dose administration of XL147 results in significant tumor growth inhibition in multiple human xenograft models in nude mice. Administration of XL147 in combination with chemotherapeutic agents results in antitumor activity in xenograft models that is enhanced over that observed with the corresponding single agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.