HDL levels are inversely related to the risk of developing atherosclerosis. In serum, paraoxonase (PON) is associated with HDL, and was shown to inhibit LDL oxidation. Whether PON also protects HDL from oxidation is unknown, and was determined in the present study. In humans, we found serum HDL PON activity and HDL susceptibility to oxidation to be inversely correlated ( r 2 ϭ 0.77, n ϭ 15). Supplementing human HDL with purified PON inhibited copper-induced HDL oxidation in a concentrationdependent manner. Adding PON to HDL prolonged the oxidation lag phase and reduced HDL peroxide and aldehyde formation by up to 95%. This inhibitory effect was most pronounced when PON was added before oxidation initiation. When purified PON was added to whole serum, essentially all of it became HDL-associated. The PON-enriched HDL was more resistant to copper ion-induced oxidation than was control HDL.
Types A and B Niemann-Pick disease (NPD) result from the deficient activity of acid sphingomyelinase (ASM). An animal model of NPD has been created by gene targeting. In affected animals, the disease followed a severe, neurodegenerative course and death occurred by eight months of age. Analysis of these animals showed their tissues had no detectable ASM activity, the blood cholesterol levels and sphingomyelin in the liver and brain were elevated, and atrophy of the cerebellum and marked deficiency of Purkinje cells was evident. Microscopic analysis revealed 'NPD cells' in reticuloendothelial organs and characteristic NPD lesions in the brain. Thus, the ASM deficient mice should be of great value for studying the pathogenesis and treatment of NPD, and for investigations into the role of ASM in signal transduction and apoptosis.
Human serum paraoxonase (PON 1) exists in 2 major polymorphic forms (Q and R), which differ in the amino acid at position 191 (glutamine and arginine, respectively). These PON allozymes hydrolyze organophosphates and aromatic esters, and both also protect LDL from copper ion-induced oxidation. We have compared purified serum PONs of both forms and evaluated their effects on LDL oxidation, in respect to their arylesterase/paraoxonase activities. Copper ion-induced LDL oxidation, measured by the production of peroxides and aldehydes after 4 hours of incubation, were reduced up to 61% and 58%, respectively, by PON Q, but only up to 46% and 38%, respectively, by an equivalent concentration of PON R. These phenomena were PON-concentration dependent. Recombinant PON Q and PON R demonstrated similar patterns to that shown for the purified serum allozymes. PON Q and PON R differences in protection of LDL against oxidation were further evaluated in the presence of glutathione peroxidase (GPx). GPx (0.1 U/mL) alone reduced copper ion-induced LDL oxidation by 20% after 4 hours of incubation. The addition of PON R to the above system resulted in an additive inhibitory effect on LDL oxidation, whereas PON Q had no such additive effect. The 2 PON allozymes also differed by their ability to inhibit initiation, as well as propagation, of LDL oxidation. PON Q was more efficient in blocking LDL oxidation if added when oxidation was initiated, whereas PON R was more potent when added 1 hour after the initiation of LDL oxidation. These data suggest that the 2 allozymes act on different substrates. Both PON allozymes were also able to reduce the oxidation of phospholipids and cholesteryl ester. PON Q arylesterase activity was reduced after 4 hours of LDL oxidation by only 28%, whereas the arylesterase activity of PON R was reduced by up to 55%. Inactivation of the calcium-dependent PON arylesterase activity by using the metal chelator EDTA, or by calcium ion removal on a Chelex column, did not alter PON's ability to inhibit LDL oxidation. However, blockage of the PON free sulfhydryl group at position 283 with p-hydroxymercuribenzoate inhibited both its arylesterase activity and its protection of LDL from oxidation. Recombinant PON mutants in which the PON free sulfhydryl group was replaced by either alanine or serine were no longer able to protect against LDL oxidation, even though they retained paraoxonase and arylesterase activities. Overall, these studies demonstrate that PON's arylesterase/paraoxonase activities and the protection against LDL oxidation do not involve the active site on the enzyme in exactly the same way, and PON's ability to protect LDL from oxidation requires the cysteine residue at position 283. (Arterioscler Thromb Vasc Biol. 1998;18:1617-1624.) Key Words: paraoxonase arylesterase LDL lipid peroxidation sulfhydryl group H uman serum paraoxonase (PON 1) is a calcium-dependent esterase that hydrolyzes organophosphates such as paraoxon, diazoxon, sarin, and soman, and also arylesters such as phenyl acetate. 1-5 ...
Abstract-In serum, human paraoxonase/arylesterase (PON1) is found exclusively associated with high density lipoprotein (HDL) and contributes to its antiatherogenic properties by inhibiting low density lipoprotein (LDL) oxidation. Difficulties in purifying PON1 from apolipoprotein A-I (apoA-I) suggested that PON1's association with HDL may occur through a direct binding between these 2 proteins. An unusual property of PON1 is that the mature protein retains its hydrophobic N-terminal signal sequence. By expressing in vitro a mutant PON1 with a cleavable N-terminus, we demonstrate that PON1 associates with lipoproteins through its N-terminus by binding phospholipids directly rather than binding apoA-I. Nonetheless, apoA-I stabilized arylesterase activity more than did phospholipid alone, apoA-II, or apoE. Consequently, we studied the role of apoA-I in PON1 expression and HDL association in mice genetically deficient in apoA-I. Though present in HDL fractions at decreased levels, PON1 arylesterase activity was less stable than in control mice. Furthermore, PON1 could be competitively removed from HDL by phospholipids, suggesting that PON1's retained N-terminal peptide allows transfer of the enzyme between phospholipid surfaces. Thus, our data suggest that PON1 is stabilized by apoA-I, and its binding to HDL and physiological distribution are dependent on the direct binding of the retained hydrophobic N-terminus to phospholipids optimally presented in association with apoA-I. (Arterioscler Thromb Vasc Biol. 1999;19
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.