Objectives-The objective of this work was to evaluate thiol-norbornene and thiol-enemethacrylate systems as the resin phase of dental restorative materials and demonstrate their superior performance as compared to dimethacrylate materials.Methods-Polymerization kinetics and overall functional group conversions were determined by Fourier transform infrared spectroscopy (FTIR). Flexural strength and modulus were determined with a 3-point flexural test. Polymerization-induced shrinkage stress was measured with a tensometer.Results-Thiol-ene polymer systems were demonstrated to exhibit advantageous properties for dental restorative materials in regards to rapid curing kinetics, high conversion, and low shrinkage and stress. However, both the thiol-norbornene and thiol-allyl ether systems studied here exhibit significant reductions in flexural strength and modulus relative to BisGMA/TEGDMA. By utilizing the thiol-ene component as the reactive diluent in dimethacrylate systems, high flexural modulus and strength are achieved while dramatically reducing the polymerization shrinkage stress. The methacrylate-thiol-allyl ether and methacrylate-thiol-norbornene systems both exhibited equivalent flexural modulus (2.1 ± 0.1 GPa) and slightly reduced flexural strength (95 ± 1 and 101 ± 3 MPa, respectively) relative to BisGMA/TEGDMA (flexural modulus; 2.2 + 0.1 GPa and flexural strength; 112 ± 3 MPa). Both the methacrylate-thiol-allyl ether and methacrylate-thiol-norbornene systems exhibited dramatic reductions in shrinkage stress (1.1 ± 0.1 and 1.1 ± 0.2 MPa, respectively) relative to BisGMA/TEGDMA (2.6 ± 0.2 MPa).Significance-The improved polymerization kinetics and overall functional group conversion, coupled with reductions in shrinkage stress while maintaining equivalent flexural modulus, result in a superior overall dental restorative material as compared to traditional bulk dimethacrylate resins.
Objectives-The objective of this study was to evaluate ternary methacrylate-thiol-ene systems, with varying thiol-ene content and thiol:ene stoichiometry, as dental restorative resin materials. It was hypothesized that an off-stoichiometric thiol-ene component would enhance interactions between the methacrylate and thiol-ene processes to reduce shrinkage stress while maintaining equivalent mechanical properties.Methods-Polymerization kinetics and functional group conversions were determined by Fourier transform infrared spectroscopy (FTIR). Cured resin mechanical properties were evaluated using a three-point flexural test, carried out with a hydraulic universal test system. Polymerization shrinkage stress was measured with a tensometer coupled with simultaneous real-time conversion monitoring.Results-The incorporation of thiol-ene mixtures as reactive diluents into conventional dimethacrylate resins previously was shown to combine synergistically advantageous methacrylate mechanical properties with the improved polymerization kinetics and reduced shrinkage stress of thiol-ene systems. In these systems, due to thiol consumption resultant from both the thiol-ene reaction and chain transfer involving the methacrylate polymerization, the optimum thiol:ene stoichiometry deviates from the traditional 1:1 ratio. Increasing the thiol:ene stoichiometry up to 3:1 results in systems with equivalent flexural modulus, 6 -20 % reduced flexural strength, and 5 -33 % reduced shrinkage stress relative to 1:1 stoichiometric thiol:ene systems.Significance-Due to their improved overall functional group conversion, and shrinkage stress reduction while maintaining equivalent flexural modulus, methacrylate-thiol-ene resins, particularly those with excess thiol, beyond the conventional 1:1 thiol:ene molar ratio, yield superior dental restorative materials compared with purely dimethacrylate resins.
Objectives The objective of this study was to evaluate composite methacrylate-thiol-ene formulations with varying thiol:ene stoichiometry relative to composite dimethacrylate control formulations. It was hypothesized that the methacrylate-thiol-ene systems would exhibit superior properties relative to the dimethacrylate control resins and that excess thiol relative to ene would further enhance shrinkage and conversion associated properties. Methods Polymerization kinetics and functional group conversions were determined by Fourier transform infrared spectroscopy (FTIR). Volume shrinkage was measured with a linometer and shrinkage stress was measured with a tensometer. Flexural modulus and strength, depth of cure, water sorption and solubility tests were all performed according to ISO 4049. Results All of the methacrylate-thiol-ene systems exhibited improvements in methacrylate conversion, flexural strength, shrinkage stress, depth of cure, and water solubility, while maintaining equivalent flexural modulus and water sorption relative to the dimethacrylate control systems. Increasing the thiol to ene stoichiometry resulted in further increased methacrylate functional group conversion and decreased volume shrinkage. Flexural modulus and strength, shrinkage stress, depth of cure, water sorption and solubility did not exhibit statistically significant changes with excess thiol . Significance Due to their improved overall functional group conversion and reduced water sorption, the methacrylate-thiol-ene formulations are expected to exhibit improved biocompatibility relative to the dimethacrylate control systems. Improvements in flexural strength and reduced shrinkage stress may be expected to result in composite restorations with superior longevity and performance.
This study investigates the formation of linear polymer grafts using thiol-acrylate conjugate addition reactions on nanoparticle surfaces. Silica nanoparticles were first modified with an amine functionality, followed by the attachment of a photocleavable acrylate. Dithiol-diacrylate films were attached to the particles through the surface acrylate groups at various stoichiometric ratios of thiol to acrylate by conducting amine-catalyzed conjugate addition polymerizations. The particles were then exposed to UV light to release the grafted polymer by photocleavage. The cleaved, grafted polymers were analyzed using infrared spectroscopy (IR) and gel permeation chromatography (GPC) and compared to polymers formed in the bulk, which remained unattached to the particles. The measured number and weight average molecular weights were similar for both polymer types within experimental error and increased from 2000 to 5000 g/mol and 4000 to 10000 g/mol, respectively, as the ratio of limiting to excess functionality increased from 0.8 to 1. Both number and weight average molecular weights followed the trend of step growth polymers with the highest molecular weight achieved for stoichiometric monomeric mixtures. Surface coverage of the nanoparticles was estimated using the molecular weight and thermogravimetric data and was found to be uniform (∼0.15chains/nm 2 ) irrespective of the stoichiometry of the reacting monomers.
We present a thiol-ene/methacrylate-based photopolymer capable of creating coplanar physical features (e.g. micro-fluidic channels) and optical index features (e.g. waveguides) using standard mask-based lithography techniques. This new photopolymer consists of two monomer species that polymerize at different rates. By selectively exposing different areas of a device for various amounts of time, we can select the state of the polymer (i.e. liquid, rubbery, or glassy) to create fluid channels or optical index structures such as waveguides. Using only three exposure steps and two masks, we demonstrate an integrated refractometer with a 90° channelwaveguide crossing to illustrate the fabrication process and the ability to create lithographically aligned waveguides across a gap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.