One of the most challenging problems in modern neuroimaging is detailed characterization of neurodegeneration. Quantifying spatial and longitudinal atrophy patterns is an important component of this process. These spatiotemporal signals will aid in discriminating between related diseases, such as frontotemporal dementia (FTD) and Alzheimer's disease (AD), which manifest themselves in the same at-risk population. Here, we develop a novel symmetric image normalization method (SyN) for maximizing the cross-correlation within the space of diffeomorphic maps and provide the EulerLagrange equations necessary for this optimization. We then turn to a careful evaluation of our method. Our evaluation uses gold standard, human cortical segmentation to contrast SyN's performance with a related elastic method and with the standard ITK implementation of Thirion's Demons algorithm. The new method compares favorably with both approaches, in particular when the distance between the template brain and the target brain is large. We then report the correlation of volumes gained by algorithmic cortical labelings of FTD and control subjects with those gained by the manual rater. This comparison shows that, of the three methods tested, SyN's volume measurements are the most strongly correlated with volume measurements gained by expert labeling. This study indicates that SyN, with cross-correlation, is a reliable method for normalizing and making anatomical measurements in volumetric MRI of patients and at-risk elderly individuals.
In this paper, we develop a new representation for outgoing solutions to the timeharmonic Maxwell equations in unbounded domains in R 3 . This representation leads to a Fredholm integral equation of the second kind for solving the problem of scattering from a perfect conductor, which does not suffer from spurious resonances or low-frequency breakdown, although it requires the inversion of the scalar surface Laplacian on the domain boundary. In the course of our analysis, we give a new proof of the existence of nontrivial families of time-harmonic solutions with vanishing normal components that arise when the boundary of the domain is not simply connected. We refer to these as k-Neumann fields, since they generalize, to nonzero wave numbers, the classical harmonic Neumann fields. The existence of k-Neumann fields was established earlier by Kress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.