Optical waves propagating through atmospheric turbulence develop spatial and temporal variations in their phase. For sufficiently strong turbulence, these phase differences can lead to interference in the propagating wave and the formation of branch points; positions of zero amplitude. Under the assumption of a layered turbulence model, we show that these branch points can be used to estimate the number and velocities of atmospheric layers. We describe how to carry out this estimation process and demonstrate its robustness in the presence of sensor noise.
We report a multiframe blind deconvolution algorithm that we have developed for imaging through the atmosphere. The algorithm has been parallelized to a significant degree for execution on high-performance computers, with an emphasis on distributed-memory systems so that it can be hosted on commodity clusters. As a result, image restorations can be obtained in seconds to minutes. We have compared and quantified the quality of its image restorations relative to the associated Cramér-Rao lower bounds (when they can be calculated). We describe the algorithm and its parallelization in detail, demonstrate the scalability of its parallelization across distributed-memory computer nodes, discuss the results of comparing sample variances of its output to the associated Cramér-Rao lower bounds, and present image restorations obtained by using data collected with ground-based telescopes.
A new approach to three-dimensional tumor localization in turbid media with the use of measurements in a single plane is presented. Optical diffuse photon-density waves are used to probe the turbid medium. Relative amplitudes and phases are measured in the detection plane. Lateral localization is accomplished in the detection plane. With a Fourier optics approach, the scattered wave is reconstructed throughout the volume to provide depth localization. Computer-simulation results that validate this technique are presented. Applications of this technique to multiple tumors and to optical mammography are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.