BackgroundSuitable algorithms based on a combination of two or more simple rapid HIV assays have been shown to have a diagnostic accuracy comparable to double enzyme-linked immunosorbent assay (ELISA) or double ELISA with Western Blot strategies. The aims of this study were to evaluate the performance of five simple rapid HIV assays using whole blood samples from HIV-infected patients, pregnant women, voluntary counseling and testing attendees and blood donors, and to formulate an alternative confirmatory strategy based on rapid HIV testing algorithms suitable for use in Tanzania.MethodsFive rapid HIV assays: Determine™ HIV-1/2 (Inverness Medical), SD Bioline HIV 1/2 3.0 (Standard Diagnostics Inc.), First Response HIV Card 1–2.0 (PMC Medical India Pvt Ltd), HIV1/2 Stat-Pak Dipstick (Chembio Diagnostic System, Inc) and Uni-Gold™ HIV-1/2 (Trinity Biotech) were evaluated between June and September 2006 using 1433 whole blood samples from hospital patients, pregnant women, voluntary counseling and testing attendees and blood donors. All samples that were reactive on all or any of the five rapid assays and 10% of non-reactive samples were tested on a confirmatory Inno-Lia HIV I/II immunoblot assay (Immunogenetics).ResultsThree hundred and ninety samples were confirmed HIV-1 antibody positive, while 1043 were HIV negative. The sensitivity at initial testing of Determine, SD Bioline and Uni-Gold™ was 100% (95% CI; 99.1–100) while First Response and Stat-Pak had sensitivity of 99.5% (95% CI; 98.2–99.9) and 97.7% (95% CI; 95.7–98.9), respectively, which increased to 100% (95% CI; 99.1–100) on repeat testing. The initial specificity of the Uni-Gold™ assay was 100% (95% CI; 99.6–100) while specificities were 99.6% (95% CI; 99–99.9), 99.4% (95% CI; 98.8–99.7), 99.6% (95% CI; 99–99.9) and 99.8% (95% CI; 99.3–99.9) for Determine, SD Bioline, First Response and Stat-Pak assays, respectively. There was no any sample which was concordantly false positive in Uni-Gold™, Determine and SD Bioline assays.ConclusionAn alternative confirmatory HIV testing strategy based on initial testing on either SD Bioline or Determine assays followed by testing of reactive samples on the Determine or SD Bioline gave 100% sensitivity (95% CI; 99.1–100) and 100% specificity (95% CI; 96–99.1) with Uni-Gold™ as tiebreaker for discordant results.
BackgroundIn Tanzania, less than a third of HIV infected children estimated to be in need of antiretroviral therapy (ART) are receiving it. In this setting where other infections and malnutrition mimic signs and symptoms of AIDS, early diagnosis of HIV among HIV-exposed infants without specialized virologic testing can be a complex process. We aimed to introduce an Early Infant Diagnosis (EID) pilot program using HIV DNA Polymerase Chain Reaction (PCR) testing with the intent of making EID nationally available based on lessons learned in the first 6 months of implementation.MethodsIn September 2006, a molecular biology laboratory at Bugando Medical Center was established in order to perform HIV DNA PCR testing using Dried Blood Spots (DBS). Ninety- six health workers from 4 health facilities were trained in the identification and care of HIV-exposed infants, HIV testing algorithms and collection of DBS samples. Paper-based tracking systems for monitoring the program that fed into a simple electronic database were introduced at the sites and in the laboratory. Time from birth to first HIV DNA PCR testing and to receipt of test results were assessed using Kaplan-Meier curves.ResultsFrom October 2006 to March 2007, 510 HIV-exposed infants were identified from the 4 health facilities. Of these, 441(87%) infants had an HIV DNA PCR test at a median age of 4 months (IQR 1 to 8 months) and 75(17%) were PCR positive. Parents/guardians for a total of 242(55%) HIV-exposed infants returned to receive PCR test results, including 51/75 (68%) of those PCR positive, 187/361 (52%) of the PCR negative, and 4/5 (80%) of those with indeterminate PCR results. The median time between blood draw for PCR testing and receipt of test results by the parent or guardian was 5 weeks (range <1 week to 14 weeks) among children who tested PCR positive and 10 weeks (range <1 week to 21 weeks) for those that tested PCR negative.ConclusionsThe EID pilot program successfully introduced systems for identification of HIV-exposed infants. There was a high response as hundreds of HIV-exposed infants were registered and tested in a 6 month period. Challenges included the large proportion of parents not returning for PCR test results. Experience from the pilot phase has informed the national roll-out of the EID program currently underway in Tanzania.
Human herpesvirus 8 (HHV-8) is associated with Kaposi's sarcoma. There is a high seroprevalence of HHV-8 in several African countries, but the transmission route is not known definitively. In this study 174 serum samples from blood donors in Tanzania were examined by immunofluorescence assays detecting antibodies to latent and lytic HHV-8 antigens. Real-time polymerase chain reaction was used for detection and quantification of HHV-8 DNA in serum. In all, 83/174 (48%) of the subjects had antibodies to latent or lytic antigens. Forty (23%) had antibodies to both antigens and of those eight (20%) had detectable HHV-8 DNA in serum. HHV-8 DNA load correlated with antibody titres to lytic, but not latent, HHV-8 antigens. This supports the usefulness of anti-lytic antibodies in HHV-8 serology and suggests that transmission of HHV-8 by blood contact could be of importance in this region.
Kaposi sarcoma (KS) is associated with a herpesvirus (HHV-8/KSHV), which expresses a latency-associated nuclear antigen (LANA). The histopathology of KS is characterized by angiogenesis, inflammatory cells, and the development of CD34+ tumor spindle cells (SCs). However, the cellular basis for the recruitment and dissemination of HHV-8 during the development of KS lesions is not clear. Twenty-nine KS biopsies with AIDS (AKS, n=22) and without HIV infection (endemic KS or EKS, n=7) were immunostained by a triple antibody method to characterize HHV-8-infected and noninfected (LANA+/-) CD34+ SCs, infiltrating CD3+, CD68+, CD20+, and CD45+ leukocytes as well as proliferating (Ki67+) cells. The CD34+/LANA+ SCs were more frequent in late (nodular) as compared with early (patch/plaque) KS stages. However, in late AKS 36.0% of SCs (median of 11 cases) were CD34+/LANA- compared with 20.7% in early cases (median of 11 cases). Furthermore, both AKS and EKS showed, at all stages, a small (4.1-6.5%) population of LANA+/CD34- cells. Proliferating Ki67+ cells were seen (4.5-11.5%) at all KS stages, and were usually more frequent in early AKS, but no significant difference was observed between nodular AKS and EKS. Most of the proliferating cells in the KS lesions were LANA+/CD34+ but a small fraction was LANA+/CD34-. Lesional CD68+ and CD3+ cells varied between AKS (7.3 and 5.2%, respectively) and EKS (4.9 and 3.1%, respectively) but were not clearly stage related. No LANA+ cells were CD3+, CD20+, or CD45+ and very few (<0.5%) were CD68+. These results indicate that not all CD34+ KS SCs were LANA+, suggesting recruitment of noninfected SCs to the lesions. Cell proliferation in general was much higher in early as compared with the late AKS stages. LANA+ SCs could have a proliferative advantage as suggested by higher frequency of cycling (Ki67+) LANA+ SCs. Few macrophages but no lymphocytes are LANA+.
The article describes the progress made in Tanzania's first cohorts, the obstacles encountered, and the lessons learned during the pilot and subsequent implementations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.