Having a better understanding of how complex systems like bone compensate for the natural variation in bone width to establish mechanical function will benefit efforts to identify traits contributing to fracture risk. Using a collection of pQCT images of the tibial diaphysis from 696 young adult women and men, we tested the hypothesis that bone cells cannot surmount the nonlinear relationship between bone width and whole bone stiffness to establish functional equivalence across a healthy population. Intrinsic cellular constraints limited the degree of compensation, leading to functional inequivalence relative to robustness, with slender tibias being as much as two to three times less stiff relative to body size compared with robust tibias. Using Path Analysis, we identified a network of compensatory trait interactions that explained 79% of the variation in whole-bone bending stiffness. Although slender tibias had significantly less cortical area relative to body size compared with robust tibias, it was the limited range in tissue modulus that was largely responsible for the functional inequivalence. Bone cells coordinately modulated mineralization as well as the cortical porosity associated with internal bone multicellular units (BMU)-based remodeling to adjust tissue modulus to compensate for robustness. Although anecdotal evidence suggests that functional inequivalence is tolerated under normal loading conditions, our concern is that the functional deficit of slender tibias may contribute to fracture susceptibility under extreme loading conditions, such as intense exercise during military training or falls in the elderly. Thus, we show the natural variation in bone robustness was associated with predictable functional deficits that were attributable to cellular constraints limiting the amount of compensation permissible in human long bone. Whether these cellular constraints can be circumvented prophylactically to better equilibrate function among individuals remains to be determined. ß
2 AbstractPurpose: Few human studies have reported early structural adaptations of bone to weightbearing exercise, which provide a greater contribution to improved bone strength than increased density. This prospective study examined site-and regional-specific adaptations of the tibia during arduous training in a cohort of male military (infantry) recruits to better understand how bone responds in vivo to mechanical loading.Methods: Tibial bone density and geometry were measured in 90 British Army male recruits (ages 21 + 3 y, height 1.78 ± 0.06 m, body mass 73.9 + 9.8 kg) in weeks 1 (Baseline) and 10 of initial military training. Scans were performed at the 4%, 14%, 38% and 66% sites, measured from the distal end plate, using pQCT (XCT2000L, Stratec Pforzheim, Germany).Customised software (BAMPack, L-3 ATI) was used to examine whole bone cross-section and regional sectors. T-tests determined significant differences between time points (P<0.05).Results: Bone density of trabecular and cortical compartments increased significantly at all measured sites. Bone geometry (cortical area and thickness) and bone strength (i, MM i and BSI) at the diaphyseal sites (38 and 66%) were also significantly higher in week 10. Regional changes in density and geometry were largely observed in the anterior, medial-anterior and anterior-posterior sectors. Calf muscle density and area (66% site) increased significantly at week 10 (P<0.01). Conclusions:In vivo mechanical loading improves bone strength of the human tibia by increased density and periosteal expansion, which varies by site and region of the bone.These changes may occur in response to the nature and distribution of forces originating from bending, torsional and shear stresses of military training. These improvements are observed early in training when the osteogenic stimulus is sufficient, which may be close to the fracture threshold in some individuals.3
Physiological systems like bone respond to many genetic and environmental factors by adjusting traits in a highly coordinated, compensatory manner to establish organ-level function. To be mechanically functional, a bone should be sufficiently stiff and strong to support physiological loads. Factors impairing this process are expected to compromise strength and increase fracture risk. We tested the hypotheses that individuals with reduced stiffness relative to body size will show an increased risk of fracturing and that reduced strength arises from the acquisition of biologically distinct sets of traits (ie, different combinations of morphological and tissue-level mechanical properties). We assessed tibial functionality retrospectively for 336 young adult women and men engaged in military training, and calculated robustness (total area/bone length), cortical area (Ct.Ar), and tissue-mineral density (TMD). These three traits explained 69% to 72% of the variation in tibial stiffness (p < 0.0001). Having reduced stiffness relative to body size (body weight  bone length) was associated with odds ratios of 1.5 (95% confidence interval [CI], 0.5-4.3) and 7.0 (95% CI, 2.0-25.1) for women and men, respectively, for developing a stress fracture based on radiography and scintigraphy. K-means cluster analysis was used to segregate men and women into subgroups based on robustness, Ct.Ar, and TMD adjusted for body size. Stiffness varied 37% to 42% among the clusters (p < 0.0001, ANOVA). For men, 78% of stress fracture cases segregated to three clusters (p < 0.03, chi-square). Clusters showing reduced function exhibited either slender tibias with the expected Ct.Ar and TMD relative to body size and robustness (ie, well-adapted bones) or robust tibias with reduced residuals for Ct.Ar or TMD relative to body size and robustness (ie, poorly adapted bones). Thus, we show there are multiple biomechanical and thus biological pathways leading to reduced function and increased fracture risk. Our results have important implications for developing personalized preventative diagnostics and treatments.
Sex differences in bone geometry and mineralization of the tibia may contribute to a decreased ability to withstand the demands imposed by novel, repetitive exercise in untrained individuals entering recruit training.
Load-specific changes resulting in improved measures of bone strength take place in athletes during a competitive season. These changes may result in improved resistance to fractures and stress fractures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.