The fungal species belonging to the genus Trichoderma has been globally recognized as a potential candidate of biofertilizer and biocontrol agent to prevent devastating soil-borne fungal pathogens and enhance growth and productivity of agricultural crops. The antagonistic activity of Trichoderma to pathogenic fungi is attributed to several mechanisms including antibiosis and enzymatic hydrolysis, which are largely associated with a wide range of metabolites secreted by the Trichoderma species. Besides suppressing target pathogens, several metabolites produced by Trichoderma species may act against non-pathogenic beneficial soil microbial communities and perform unintended alterations within the structures and functions of microbial communities in the crop rhizosphere. Multiple microbial interactions have been shown to enhance biocontrol efficacy in many cases as compared to bioinoculant employed alone. The key advances in understanding the ecological functions of the Trichoderma species with special emphasis on their associations with plant roots and other microbes exist in the crop rhizosphere, which are briefly described here. This review focuses on the interactions of metabolites secreted by Trichoderma species and plant roots in the rhizosphere and their impacts on pathogenic and non-pathogenic soil microbial communities. The complex interactions among Trichoderma–plants–microbes that may occur in the crop rhizosphere are underlined and several prospective avenues for future research in this area are briefly explored. The data presented here will stipulate future research on sustainably maximizing the efficiency of Trichoderma inoculation and their secondary metabolites in the crop soil ecosystem.
Protecting food crops from viral pathogens is a significant challenge for agriculture. An integral approach to genome-editing, known as CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR associated protein 9), is used to produce virus-resistant cultivars. The CRISPR/Cas9 tool is an essential part of modern plant breeding due to its attractive features. Advances in plant breeding programs due to the incorporation of Cas9 have enabled the development of cultivars with heritable resistance to plant viruses. The resistance to viral DNA and RNA is generally provided using the Cas9 endonuclease and sgRNAs (single-guide RNAs) complex, targeting particular virus and host plant genomes by interrupting the viral cleavage or altering the plant host genome, thus reducing the replication ability of the virus. In this review, the CRISPR/Cas9 system and its application to staple food crops resistance against several destructive plant viruses are briefly described. We outline the key findings of recent Cas9 applications, including enhanced virus resistance, genetic mechanisms, research strategies, and challenges in economically important and globally cultivated food crop species. The research outcome of this emerging molecular technology can extend the development of agriculture and food security. We also describe the information gaps and address the unanswered concerns relating to plant viral resistance mediated by CRISPR/Cas9.
Materials are the foundation in human development for improving human standards of life. This research aimed to develop microbial composite films by integrating sodium alginate with Bacillus subtilis. Sodium alginate film was fabricated as control. The microbial composite films were fabricated by integrating 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 g of Bacillus subtilis into the sodium alginate. Evaluations were performed on the mechanical, physical, chemical and thermal properties of the films. It was found that films reinforced with Bacillus subtilis significantly improved all the mentioned properties. Results show that 0.5 g microbial composite films had the highest tensile strength, breaking strain and toughness, which were 0.858 MPa, 87.406% and 0.045 MJ/m3, respectively. The thickness of the film was 1.057 mm. White light opacity, black light opacity and brightness values were 13.65%, 40.55% and 8.19%, respectively. It also had the highest conductivity, which was 37 mV, while its water absorption ability was 300.93%. Furthermore, it had a higher melting point of 218.94 °C and higher decomposition temperature of 252.69 °C. SEM also showed that it had filled cross-sectional structure and smoother surface compared to the sodium alginate film. Additionally, FTIR showed that 0.5 g microbial composite films possessed more functional groups at 800 and 662 cm-1 wavenumbers that referred to C–C, C–OH, C–H ring and side group vibrations and C-OH out-of-plane bending, respectively, which contributed to the stronger bonds in the microbial composite film. Initial conclusions depict the potential of Bacillus subtilis to be used as reinforcing material in the development of microbial composite films, which also have the prospect to be used in electronic applications. This is due to the conductivity of the films increasing as Bacillus subtilis cell mass increases.
To date, the waste-to-wealth concept is a common aptitude in the world (Varzakas et al., 2016). The food and agricultural industries all over the world produce a large number of wastes after using the whole fruit, which contains significant amounts of bioactive or functional components, sugar, and dietary fiber (Madhumeena et al., 2021). The utilization of these wastes has become a main concern and challenging aspect because of the higher production of by-products (peels, seeds, leaves, stems, roots, and pomace) during several stages of the processing chain (Mármol et al., 2021). Studies have validated the waste utilization process as a novel, less expensive, economical, and alternative source of food additives, antioxidants, pectin, and organic acids through various extractions and fermentation methods (Roda & Lambri, 2019). In this case, based on recent studies, fruit-by-products have been suggested as an alternative vehicle for probiotic production (Roda & Lambri, 2019;Ruiz Rodríguez et al., 2021).Pineapple, watermelon, and banana are popular tropical fruits in the world; their production per year worldwide was 18.8, 81.2, and 116 million tons, respectively (FAO, 2020;Yang et al., 2016). Their by-products are a rich source of nutritional components, which make them the best suitable candidate to produce new value-added products (Ahmadi & Ganjidoust, 2021;Vicenssuto & de Castro, 2020).The demand for the efficient use of food by-products has increased due to economic and environmental concerns (Yang et al., 2010).According to Food and Agriculture Organization and the World Health Organization (FAO/WHO, 2001), probiotics are "live microorganisms when administered in adequate amounts confer a health benefit on the host". The Coronavirus Disease (COVID-19), which
Bacterial flagella are complex multicomponent structures that help in cell locomotion. It is composed of three major structural components: the hook, the filament and basal body. The special mechanical properties of flagellar components make them useful for the applications in nanotechnology especially in nanotube formation. Carbon nanotubes (CNTs) are nanometer scale tube-shaped material and it is very useful in many applications. However, the production of CNTs is costly and detrimental to the environment as it pollutes the environment. Therefore, bacterial flagella have become a highly interesting research area especially in producing bacterial nanotubes that could replace CNTs. In this review article, we will discuss about bacterial flagellum and carbon nanotubes in the context of their types and applications. Then, we will focus and review on the characteristics of bacterial flagellum in comparison to carbon nanotubes and subsequently, the advantages of bacterial flagellum as nanotubes in comparison with carbon nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.