Bovine milk oligosaccharides (BMOs) are recognized by the dairy and food industries, as well as by infant formula manufacturers, as novel, high-potential bioactive food ingredients. Recent studies revealed that bovine milk contains complex oligosaccharides structurally related to those previously thought to be present in only human milk. These BMOs are microbiotic modulators involved in important biological activities, including preventing pathogen binding to the intestinal epithelium and serving as nutrients for a selected class of beneficial bacteria. Only a small number of BMO structures are fully elucidated. To better understand the potential of BMOs as a class of biotherapeutics, their detailed structure analysis is needed. This study initiated the development of a structure library of BMOs and a comprehensive evaluation of structure-related specificity. The bovine milk glycome was profiled by high-performance mass spectrometry and advanced separation techniques to obtain a comprehensive catalog of BMOs, including several novel, lower abundant neutral and fucosylated oligosaccharides that are often overlooked during analysis. Structures were identified using isomer-specific tandem mass spectroscopy and targeted exoglycosidase digestions to produce a BMO library detailing retention time, accurate mass and structure to allow their rapid identification in future studies.
The isolation of whey proteins from human and bovine milks followed by profiling of their entire N-glycan repertoire is described. Whey proteins resulting from centrifugation and ethanol precipitation of milk were treated with PNGase F to release protein-bound N-glycans. Once released, N-glycans were analyzed via nanoflow liquid chromatography coupled with quadrupole time-of-flight mass spectrometry following chromatographic separation on a porous graphitized carbon chip. In all, 38 N-glycan compositions were observed in the human milk sample while the bovine milk sample revealed 51 N-glycan compositions. These numbers translate to over a hundred compounds when isomers are considered and point to the complexity of the mixture. High mannose, neutral, and sialylated complex/hybrid glycans were observed in both milk sources. Although NeuAc sialylation was observed in both milk samples, the NeuGc residue was only observed in bovine milk and marks a major difference between human and bovine milks. To the best of our knowledge, this study is the first MS based confirmation of NeuGc in milk protein bound glycans as well as the first comprehensive N-glycan profile of bovine milk proteins. Tandem MS was necessary for resolving complications presented by the fact that (NeuGc:Fuc) corresponds to the exact mass of (NeuAc:Hex). Comparison of the relative distribution of the different glycan types in both milk sources was possible via their abundances. While the human milk analysis revealed a 6% high mannose, 57% sialylation, and 75% fucosylation distribution, a 10% high mannose, 68% sialylation, and 31% fucosylation distribution was observed in the bovine milk analysis. Comparison with the free milk oligosaccharides yielded low sialylation and high fucosylation in human, while high sialylation and low fucosylation are found in bovine. The results suggest that high fucosylation is a general trait in human, while high sialylation and low fucosylation are general features of glycosylation in bovine milk.
Extensive site-specific glycosylation analysis of individual glycoproteins is difficult due to the nature and complexity of glycosylation in proteins. In protein mixtures, these analyses are even more difficult. We present an approach combining non-specific protease digestion, nano-flow liquid chromatography and tandem mass spectrometry (MS/MS) aimed at comprehensive site-specific glycosylation analysis in protein mixtures. The strategy described herein involves the analysis of a complex mixture of glycopeptides generated from immobilized-pronase digestion of a cocktail of glycoproteins consisting of bovine lactoferrin, kappa casein and bovine fetuin using nano-flow liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (nano-LC/Q-TOF MS). The resulting glycopeptides were chromatographically separated on a micro fluidic chip packed with porous graphitized carbon and analyzed via MS and MS/MS analyses. In all, 233 glycopeptides (identified based on composition and including isomers) corresponding to 18 glycosites were observed and determined in a single mixture. The glycopeptides were a mixture of N-linked glycopeptides (containing high mannose, complex and hybrid glycans) and O-linked glycopeptides (mostly sialylated). Results from this study were comprehensive as detailed glycan micro-heterogeneity information was obtained. This approach presents a platform to simultaneously characterize N- and O-glycosites in the same mixture with extensive site heterogeneity.
Breastfeeding is one of the main factors guiding the composition of the infant gut microbiota in the first months of life. This process is shaped in part by the high amounts of human milk oligosaccharides that serve as a carbon source for saccharolytic bacteria such as Bifidobacterium species. Infant-borne bifidobacteria have developed various molecular strategies for utilizing these oligosaccharides as a carbon source. We hypothesized that these species also interact with N-glycans found in host glycoproteins that are structurally similar to free oligosaccharides in human milk. Endo--Nacetylglucosaminidases were identified in certain isolates of Bifidobacterium longum subsp. longum, B. longum subsp. infantis, and Bifidobacterium breve, and their presence correlated with the ability of these strains to deglycosylate glycoproteins. An endoglycosidase from B. infantis ATCC 15697, EndoBI-1, was active toward all major types of N-linked glycans found in glycosylated proteins. Its activity was not affected by core fucosylation or extensive fucosylation, antenna number, or sialylation, releasing several N-glycans from human lactoferrin and immunoglobulins A and G. Extensive N-deglycosylation of whole breast milk was also observed after coincubation with this enzyme. Mutation of the active site of EndoBI-1 did not abolish binding to N-glycosylated proteins, and this mutant specifically recognized Man 3 GlcNAc 2 (␣1-6Fuc), the core structure of human N-glycans. EndoBI-1 is constitutively expressed in B. infantis, and incubation of the bacterium with human or bovine lactoferrin led to the induction of genes associated to import and consumption of human milk oligosaccharides, suggesting linked regulatory mechanisms among these glycans. This work reveals an unprecedented interaction of bifidobacteria with host
Glycosylation is one of the most common yet diverse post-translational modifications. Information on glycan heterogeneity and glycosite occupancy is increasingly recognized as crucial to understanding glycoprotein structure and function. Yet, no approach currently exists with which to holistically consider both the proteomic and glycomic aspects of a system. Here, we developed a novel method of comprehensive glycosite profiling using nanoflow liquid chromatography/mass spectrometry (nano-LC/MS) that shows glycan isomer-specific differentiation on specific sites. Glycoproteins were digested by controlled non-specific proteolysis in order to produce informative glycopeptides. High-resolution, isomer-sensitive chromatographic separation of the glycopeptides was achieved using microfluidic chip-based capillaries packed with graphitized carbon. Integrated LC/MS/MS not only confirmed glycopeptide composition but also differentiated glycan and peptide isomers and yielded structural information on both the glycan and peptide moieties. Our analysis identified at least 13 distinct glycans (including isomers) corresponding to five compositions at the single N-glycosylation site on bovine ribonuclease B, 59 distinct glycans at five N-glycosylation sites on bovine lactoferrin, 13 distinct glycans at one N-glycosylation site on four subclasses of human immunoglobulin G, and 20 distinct glycans at five O-glycosylation sites on bovine κ-casein. Porous graphitized carbon provided effective separation of glycopeptide isomers. The integration of nano-LC with MS and MS/MS of non-specifically cleaved glycopeptides allows quantitative, isomer-sensitive, and site-specific glycoprotein analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.