Agro-waste fibres (AWFs) are of very reasonable economic value and have attracted a lot of research interest globally. AWFs have significant potential in composites due to low cost, high strength, environmental benign nature, availability, and sustainability. Nevertheless, dozens of the investigations have failed to give the desired attention of the fire behaviour of AWF composite materials when exposed to heat atmosphere. In this chapter, a detailed account of AWF composite material combustion process was discussed to understand the reason for the high heat release rates (HRR) caused by cellulosic content. HRR is a critical component of the flammability properties of AWF composite materials as the fire behaviour largely depends on it. The prospective examination of AWF composite material fire behaviour gives the required direction about the limits of their utilization and developmental trends for future industrial applications in Nigeria.
Composite laminates have distinct interface comprising reinforcements from both synthetic or natural sources and polymers which make them favourable in the world of composites due to the intrinsic benefits they possess. Composite laminates from natural sources have shown to be highly susceptible to flame and have been improved by the addition of flame retardants (FR) during processing. The effect of the FR on the mechanical behaviour of these composite laminates is quite unclear and has not been given the in-depth attention. In this paper, the effect of FR of two set of composite laminates on mechanical failure was assessed. The two set of composite laminates comprising oil palm fibre composite (OPFC) and wood sawdust composite (WSC) were processed with polyester resin and six (6) FR using hand-lay compression moulding. The FRs were derived from aluminium tri-hydroxide (ATH), ammonium polyphosphate (APP), gum Arabic powder (GAP) and carbon black (CB) at 12%, 15% and 18% loading ratios. Specimen cut from the composite laminates were tested for failure under tensile and flexural loading using the universal testing machine (UTM). The results obtained shows that the addition of 15%APP-GAP/CB in WSC and 12%APP-GAP in WSC exhibited an outstanding performance in improving tensile and flexural strength of the composite laminates by 154% (from 9.67MPa to 24.56MPa) and 103.4% (from 42.14MPa to 85.7MPa) respectively compared to those without FR while the FR in OPFC did not show any significant improvements. It can be concluded that FR with particulate reinforcement could improve the mechanical behaviour of composite laminates as a suitable reinforcement. Suoware, T. O. | Department of Mechanical Engineering Technology, Federal Polytechnic, Ekowe, Bayelsa State, Nigeria
The high yielding of oil pam fibre reinforced composite (OPFC) to fire has necessitated research to improve and develop fire retardants (FR) to mitigate the spread of fire. Researchers relied on Flame Retardants (FR) classified as either halogenated or non-halogenated based FR to improve the performance of composites with emphasis on flammability properties (FP). The main object of this paper is to evaluate the effect of six non-halogenated FR species in OPFC to meet required fire safety standards for building purposes. The six FR species comprising aluminum tri-hydroxide (ATH), ammonium polyphosphate (APP), Gum Arabic powder (GAP) and carbon black (CB) were processed with OPFC at 0, 15 and 18% loading ratio using hand lay-up compression moulding technique. Specimens cut from the OPFC panels were tested for flammability and thermal properties using thermogravimetric analysis (TGA/DSC Metlar Toledo) and cone calorimeter apparatus respectively. The result obtained for thermal analysis shows that the panel was thermally stable at 391.6OC before degradation began compared to those without FR while peak flammability properties obtained for heat released rates, mass loss rates and smoke production rates showed the OPFC panels rapid fire response were significantly reduced respectively by 67.4%, 50.9% and 37.5% compared to those without FR. It can be concluded that the hybrid FR comprising APP-GAP showed a stable char structure during fire and thus prevented the escape of combustible volatiles which reduced the peak FP values of the OPFC panels. These flammability properties could be said to meet required fire safety standards for building applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.