The interest in phytochemicals found in plant foods as bioactive components of the diet has expanded in the last few years. This is because they have been linked with the prevention or reduced progression of many chronic diseases, such as cardiovascular disease, cancer and degenerative diseases. Oxidative stress, which could bring about oxidative damage to DNA, protein and lipids has been found to be a major factor in the aetiology of these diseases. Epidemiological evidence shows that observed health benefits of these plant foods on humans, especially fruits and vegetables, are due to the presence of bioactive phytochemicals which today, play an important role in pharmaceutical applications. Research shows that these compounds modulate the risk of chronic disease development by inhibiting reactions mediated by reactive oxygen species (ROS). Consequently, strong recommendations for their ingestion through the diet have become increasingly popular to improve man's health. This article presents a review of the role of nutraceuticals, functional foods and value added food products in the prevention and treatment of chronic diseases. We also summarized the biotechnological approaches for enhancing the level of these bioactive compounds in plants, with a view to improve their nutraceutical value and phytotherapy efficiency.
Adaptive response is the ability of an organism to better counterattack stress-induced damage in response to a number of different cytotoxic agents. Monosodium L-glutamate (MSG), the sodium salt of amino acid glutamate, is commonly used as a food additive. We investigated the effects of MSG on the life span and antioxidant response in Drosophila melanogaster (D. melanogaster). Both genders (1 to 3 days old) of flies were fed with diet containing MSG (0.1, 0.5, and 2.5-g/kg diet) for 5 days to assess selected antioxidant and oxidative stress markers, while flies for longevity were fed for lifetime. Thereafter, the longevity assay, hydrogen peroxide (H O ), and reactive oxygen and nitrogen species levels were determined. Also, catalase, glutathione S-transferase and acetylcholinesterase activities, and total thiol content were evaluated in the flies. We found that MSG reduced the life span of the flies by up to 23% after continuous exposure. Also, MSG increased reactive oxygen and nitrogen species and H O generations and total thiol content as well as the activities of catalase and glutathione S-transferase in D. melanogaster (P < .05). In conclusion, consumption of MSG for 5 days by D. melanogaster induced adaptive response, but long-term exposure reduced life span of flies. This study may therefore have public health significance in humans, and thus, moderate consumption of MSG is advocated by the authors.
In recent years, utilization of Rhus coriaria L. (sumac) is upgrading not only in their culinary use and human nutrition, but also in the pharmaceutical industry, food industry and veterinary practices. This is driven by accumulating evidence that support the ethnobotanical use of this plant; in particular, advanced knowledge of the content of nutritional, medicinal and techno-functional bioactive ingredients. Herein, we discuss polyphenolic compounds as the main bioactive ingredients in Rhus coriaria L., which contribute mainly to the significance and utility of this spice. Most of the antioxidant potential and therapeutic roles of sumac are increasingly attributed to its constituent tannins, flavonoids, and phenolic acids. Hydroxyphenyl pyranoanthocyanins and other anthocynins are responsible for the highly desired red pigments accounting for the strong pigmentation capacity and colorant ability of sumac. Certain polyphenols and the essential oil components are responsible for the peculiar flavor and antimicrobial activity of sumac. Tannin-rich sumac extracts and isolates are known to enhance the food quality and the oxidative stability of animal products such as meat and milk. In conclusion, polyphenol-rich sumac extracts and its bioactive ingredients could be exploited towards developing novel food products which do not only address the current consumers’ interests regarding organoleptic and nutritional value of food, but also meet the growing need for ‘clean label’ as well as value addition with respect to antioxidant capacity, disease prevention, and health promotion in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.