Reade[10] has recently improved Weyl's classical estimate λn = o(n−3/2) for the eigenvalues of a symmetric kernel K∈C1 by relaxing the Cl hypothesis to the assumptions that K∈L2[0, 2π]2, that K is absolutely continuous in each variable separately, and that both ∂K/∂s and ∂K/t belong to L2[0, 2π]2. The conclusion of his theorem, that is, of course, stronger than λn = o(n−3/2).
In [12] we elaborate the vague principle that the behaviour at infinity of the decreasing sequence of singular numbers sn(K) of a Hilbert–Schmidt kernel K is at least as good as that of the sequence {n−1/qω(n−1;K)}, where ωp is an Lp-modulus of continuity of K and q = p/(p − 1), where 1 ≤ p ≤ 2. Despite the author's effort to justify his study of refinements of the half-century old theorem of Smithies [13], that theorem remains the central result of the subject (viz. that for 0 < a ≤ 1, K∈Lip(a, p) implies that sn(K) = O(n−α−1/q)). For example, Cochran's omnibus theorems [5, 6] that delimit the Schatten classes to which a kernel belongs are based on the blending of ‘smoothness’ conditions and emphasize the pivotal role of the principal corollary of Smithies' theorem (viz. {sn}∈lr if r−1 < α + q−1). Cochran later offered in [7] a very simple derivation of the corollary from a Fourier series theorem of Konyushkov (see [2], vol. II, p. 197), whose proof was, however, at least as intricate as Smithies' demonstration.
Garsia's discovery that functions in the periodic Besov space A(p~', p, 1), with 1 < p < oo , have uniformly convergent Fourier series prompted him, and others, to seek a proof based on one of the standard convergence tests. We show that Lebesgue's test is adequate, whereas Garsia's criterion is independent of other classical critiera (for example, that of Dini-Lipschitz). The method of proof also produces a sharp estimate for the rate of uniform convergence for functions in A(p~', p, 1). Further, it leads to a very simple proof of the embedding theorem for these spaces, which extends (though less simply) to A(a, p, q).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.