For safety purposes, railroad tracks need to be inspected on a regular basis for physical defects or design noncompliances. Such track defects and non-compliances, if not detected in a timely manner, may eventually lead to grave consequences such as train derailments.In this paper, we present a real-time automatic visionbased rail inspection system, with main focus on anchorsan important rail component type, and anchor-related rail defects, or exceptions. Our system robustly detects important rail components including ties, tie plates, anchors with high accuracy and efficiency. Detected objects are then consolidated across video frames and across camera views to map to physical rail objects, by combining the video data streams from all camera views with GPS information and speed information from the distance measuring instrument (DMI). After these rail components are detected and consolidated, further data integration and analysis is followed to detect sequence-level track defects, or exceptions. Quantitative analysis performed on a real online field test conducted on different track conditions demonstrates that our system achieves very promising performance in terms of rail component detection, anchor condition assessment, and compliance-level exception detection. We also show that our system outperforms another advanced rail inspection system in anchor detection.
In this paper, we present a real-time automatic vision-based rail inspection system, which performs inspections at 16 km/h with a frame rate of 20 fps. The system robustly detects important rail components such as ties, tie plates, and anchors, with high accuracy and efficiency. To achieve this goal, we first develop a set of image and video analytics and then propose a novel global optimization framework to combine evidence from multiple cameras, Global Positioning System, and distance measurement instrument to further improve the detection performance. Moreover, as the anchor is an important type of rail fastener, we have thus advanced the effort to detect anchor exceptions, which includes assessing the anchor conditions at the tie level and identifying anchor pattern exceptions at the compliance level.
Quantitative analysis performed on a large video data set captured with different track and lighting conditions, as well as on a realtime field test, has demonstrated very encouraging performance on both rail component detection and anchor exception detection.Specifically, an average of 94.67% precision and 93% recall rate has been achieved for detecting all three rail components, and a 100% detection rate is achieved for compliance-level anchor exception with three false positives per hour. To our best knowledge, our system is the first to address and solve both component and exception detection problems in this rail inspection area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.