GHB is used therapeutically and recreationally, although the precise mechanism of action responsible for its different behavioral effects is not entirely clear. The purpose of this review is to summarize how behavioral procedures, especially drug discrimination procedures, have been used to study the mechanism of action of GHB. More specifically, we will review several different drug discrimination procedures and discuss how they have been used to qualitatively and quantitatively study different components of the complex mechanism of action of GHB. A growing number of studies have provided evidence that the behavioral effects of GHB are mediated predominantly by GABA B receptors. However, there is also evidence that the mechanisms mediating the effects of GHB and the prototypical GABA B receptor agonist baclofen are not identical, and that other mechanisms such as GHB receptors and subtypes of GABA A and GABA B receptors might contribute to the effects of GHB. These findings are consistent with the different behavioral profile, abuse liability, and therapeutic indications of GHB and baclofen. A better understanding of the similarities and differences between GHB and baclofen, as well as the pharmacological mechanisms of action underlying the recreational and therapeutic effects of GHB, could lead to more effective medications with fewer adverse effects.
Cocaine abuse and obesity are serious public health problems, and studies suggest that both dopamine and serotonin systems are involved in regulating the consumption of drugs and food. Lorcaserin has serotonin (5-HT) 2C receptor agonist actions, is approved by the U.S. Food and Drug Administration for treating obesity, and might be effective for treating cocaine abuse. These studies characterized the pharmacokinetic and behavioral profiles of lorcaserin (intragastric administration) and determined the effectiveness of lorcaserin to alter discriminative stimulus and reinforcing effects of cocaine (intravenous administration) in rhesus monkeys. Administered acutely, lorcaserin dosedependently increased the occurrence of yawning while decreasing spontaneous activity and operant responding for food. These effects appeared within 30-60 minutes of administration and began to dissipate by 240 minutes, a time course closely matching plasma concentrations of lorcaserin. In monkeys discriminating cocaine from saline, lorcaserin alone did not occasion cocaine-appropriate responding but shifted the cocaine dose-response curve to the right and down in two of three monkeys. When administered acutely, lorcaserin dosedependently decreased the rate at which monkeys responded for infusions of cocaine. When administered chronically, 3.2 mg/kg lorcaserin reduced the rate of cocaine-maintained responding by 50% for the duration of a 14-day treatment period. Together, these results show that lorcaserin attenuates the discriminative stimulus effects of cocaine after acute administration and the reinforcing effects of cocaine after acute and repeated administration, consistent with the view that it might have utility in treating cocaine abuse.
Opioid abuse remains a serious public health challenge, despite the availability of medications that are effective in some patients (naltrexone, buprenorphine, and methadone). This study explored the potential of a pseudoirreversible mu-opioid receptor antagonist [methocinnamox (MCAM)] as a treatment for opioid abuse by examining its capacity to attenuate the reinforcing effects of mu-opioid receptor agonists in rhesus monkeys. In one experiment, monkeys responded for heroin (n 5 5) or cocaine (n 5 4) under a fixed-ratio schedule. Another group (n 5 3) worked under a choice procedure with one alternative delivering food and the other alternative delivering the mu-opioid receptor agonist remifentanil. A third group (n 5 4) responded for food and physiologic parameters were measured via telemetry. The effects of MCAM were determined in all experiments and, in some cases, were compared with those of naltrexone.When given immediately before sessions, naltrexone dosedependently decreased responding for heroin and decreased choice of remifentanil while increasing choice of food, with responding returning to baseline levels 1 day after naltrexone injection. MCAM also decreased responding for heroin and decreased choice of remifentanil while increasing choice of food; however, opioid-maintained responding remained decreased for several days after treatment. Doses of MCAM that significantly decreased opioid-maintained responding did not decrease responding for cocaine or food. MCAM did not impact heart rate, blood pressure, body temperature, or activity at doses that decreased opioid self-administration. Because MCAM selectively attenuates opioid self-administration for prolonged periods, this novel drug could be a safe and effective alternative to currently available treatments for opioid abuse.
Nutritional status can impact dopamine systems in a manner that might be important to understanding possible common neurobiological mechanisms that mediate abnormal compulsive food (e.g., obesity) and drug taking. Limiting food intake, for example, can increase sensitivity to the behavioral effects of indirect-acting dopamine receptor agonists. Much less is known regarding possible dietinduced changes in sensitivity to direct-acting dopamine receptor drugs. The present study investigated the effects of a high fat diet and of food restriction on sensitivity of rats to the behavioral effects of a direct-acting dopamine receptor agonist and a dopamine receptor antagonist. Free access to high fat chow increased sensitivity to quinpirole-induced yawning without changing sensitivity to raclopride-induced catalepsy or quinpirole-induced hypothermia. Food restriction (10 g/day) decreased sensitivity to quinpirole-induced yawning and raclopride-induced catalepsy without affecting sensitivity to quinpirole-induced hypothermia. Free access to a standard chow restored sensitivity to the behavioral effects of both drugs in rats that were previously food-restricted but not in rats that previously ate a high fat diet. These data confirm that food restriction can decrease sensitivity to behavioral effects of direct-acting dopamine receptor drugs, they provide evidence (i.e., no change in hypothermic effects) indicating that these changes are not due to pharmacokinetic mechanisms, and they provide initial evidence showing enhanced sensitivity to behavioral effects of dopamine receptor drugs in rats eating a high fat diet. These changes in sensitivity of dopamine systems could be relevant to understanding the impact of nutrition on therapeutic and recreational drug use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.