This Article reports the use of scanning electrochemical microscopy (SECM) for the quantitative study of acid-induced dissolution. An ultramicroelectrode (UME) is used to generate a flux of protons galvanostatically just above a sample surface, creating controlled acid challenges relevant to acid erosion. The electrochemical technique produces etch features in the sample, which are characterized by white light interferometry (WLI). The technique has been applied to bovine enamel where understanding the kinetics of dissolution is important in the context of acid erosion. Dissolution has been observed as a fast process, but the high rates of mass transport in SECM allow the surface kinetics of dissolution to be evaluated. Key attributes of SECM for these studies are the ability to deliver high, controllable, and local acid challenges in a defined way and that multiple dissolution measurements can be performed on one sample, eliminating intersample variability effects. A novel moving boundary finite element model has been designed to describe the etching process, which allows the etch kinetics to be evaluated quantitatively, simply by measuring the size and shape of etch features over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.