The chondrocyte and its pericellular microenvironment together represent the chondron, historically considered the primary structural, functional and metabolic unit of articular and other hyaline cartilages. This review summarises research over the last 10 years to establish the molecular anatomy, functional properties and metabolic contribution of the chondron in articular cartilage homeostasis, and its failure during the initiation and progression of degenerative osteoarthritis.
More than 300 primary cilia have been identified electronmicroscopically in a variety of embryonic and mature connective tissue cells. To further define the enigmatic function of these cilia, we examined the interrelationships between the basal apparatus and cytoplasmic organelles and the ciliary shaft and the extracellular matrix. The basal diplosome was consistently associated with the secretory organelles including the maturing face of the Golgi complex, Golgi vacuoles and vesicles, the microtubular network, the plasma membrane, and coated pits and vesicles. Small vesicles and amorphous granules were also observed within the ciliary lumen and adjacent to the ciliary membrane. Microtubule-membrane bridges linked axonemal tubules to the ciliary membrane. The position, projection, and orientation of the axoneme were influenced by the structural organisation and mechanical properties of the matrix and frequently caused angulation of the ciliary shaft relative to the basal body. Located midway between the secretory apparatus and the extracellular matrix, primary cilia would appear ideally situated to mediate the necessary interaction between the cell and its surrounding environment prerequisite to the formation and maintenance of a functionally effective matrix. We propose that primary cilia in connective tissue cells could act as multifunctional, cellular cybernetic probes, receiving, transducing, and conducting a variety of extrinsic stimuli to the intracellular organelles responsible for effecting the appropriate homeostatic feedback response to changes in the extracellular micro-environment.
Chondrons have recently been extracted from adult articular cartilages and techniques developed to study their structure and composition in isolation. This study introduces methods to immobilize isolated canine chondrons in thin layers of agarose gel for immunohistochemistry and future in vitro studies. An antibody to Type VI collagen which stained the chondron in suspension was used to successfully validate the system and its feasibility for immunoelectron microscopy. Monoclonal and polyclonal antibodies to a variety of epitopes on the proteoglycan molecule were tested on fresh and fixed plugs cored from chondron-agarose gels. Plugs were immunolabeled with peroxidase-diaminobenzidine before or after digestion with testicular hyaluronidase or chondroitinase ABC. Trypsin/chymotrypsin were used to challenge epitopes of the core protein. The results indicate that epitopes to keratan sulfate, chondroitin sulfate, hyaluronate binding region, and core protein are localized in the chondron. Consistent staining was found in the tail and interconnecting segments between chondrons, whereas staining of the pericellular matrix and capsule adjacent to the chondrocyte varied according to the enzyme pre-treatment employed. We conclude that isolated chondrons are rich in proteoglycan monomer, which is particularly concentrated in the tail and interconnecting segments of the chondron where it could function to protect and stabilize the chondrocyte.
Osteoarthritis (OA) is a common joint disease characterized by articular cartilage degeneration. The etiology of OA is unknown. Because several previous studies have shown that primary cilia play critical roles in joint development, this study examined the incidence and morphology of primary cilia in chondrocytes during joint degeneration in a naturally occurring bovine model of OA. Primary cilia were detected using antibodies to acetylated alpha-tubulin in normal cartilage as well as in mild and severe OA tissue. In normal cartilage, cilia number and length were lowest in the superficial zone and increased with distance from the articular surface. In OA tissue, the incidence and length of cilia increased at the eroding articulating surface, resulting in an overall increased proportion of cilia. This is the first study to show that primary cilia are present on chondrocytes throughout OA progression and that the overall percentage of ciliated cells within the degenerating cartilage increases with OA severity.
The primary cilium is a ubiquitous cytoplasmic organelle of unknown function. Ultrastructural evidence of primary cilia in chondrocytes, and their colocalisation with the Golgi apparatus, has led to speculation that these structures are functionally linked. To investigate the relationship between these organelles, we examined the molecular anatomy of the microtubular cytoskeleton in the chondrocytes of chick embryo sterna. Thick cryosections were immunolabelled with antibodies directed against acetylated α-tubulin (C3B9), detyrosinated α-tubulin (ID5) and total α-tubulin (TAT), and imaged at high magnification using confocal laser scanning microscopy. Transmission electron microscopy confirmed the ultrastructure of the chondrocyte primary cilium and its structural relationship to the Golgi apparatus. Detyrosinated and acetylated α-tubulins were concentrated in the centrioles, centrosome and microtubule organising centre adjacent to the nucleus, with total α-tubulin distributed throughout the cytoplasm. ID5 stained the primary cilium at an incidence of 1 per cell, its colocalisation with C3B9 identifying the primary cilium as one of the most stable features of the microtubular cytoskeleton. Primary cilia varied from 1 to 4 µm in length, and 3 patterns of projection into the extracellular matrix were identified ; (1) full extension and matrix contact, with minor undulations along the length ; (2) partial extension and matrix contact, with a range of bending deflections ; (3) cilium reclined against the cell surface with minimal matrix contact. Ultrastructural studies identified direct connections between extracellular collagen fibres and the proteins which decorate ciliary microtubules, suggesting a matrix-cilium-Golgi continuum in hyaline chondrocytes. These results strengthen the hypothesis that the primary cilium acts as a ' cellular cybernetic probe ' capable of transducing environmental information from the extracellular matrix, communicating this information to the centrosome, and regulating the exocytosis of Golgi-derived secretory vesicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.