The effects of elevated temperature, carbon dioxide, and water stress on the isoflavone content of seed from a dwarf soybean line [Glycine max (L.) Merrill] were determined, using controlled environment chambers. Increasing the temperature from 18 degrees C during seed development to 23 degrees C decreased total isoflavone content by about 65%. A further 5 degrees C increase to 28 degrees C decreased the total isoflavone content by about 90%. Combining treatments at elevated temperature with elevated CO(2) (700 ppm) and water stress to determine the possible consequences of global climate change on soybean seed isoflavone content indicated that elevated CO(2) at elevated temperatures could partially reverse the effects of temperature on soybean seed isoflavone content. The addition of drought stress to plants grown at 23 degrees C and elevated CO(2) returned the total isoflavone levels to the control values obtained at 18 degrees C and 400 ppm CO(2). The promotive effects of drought and elevated CO(2) at 23 degrees C on the 6' '-O-malonygenistin and genistin levels were additive. The individual isoflavones often had different responses to the various growth conditions during seed maturation, modifying the proportions of the principal isoflavones. Therefore, subtle changes in certain environmental factors may change the isoflavone content of commercially grown soybean, altering the nutritional values of soy products.
Proteins in extracts from cotyledons, hypocotyls, and roots of 5-d-old, dark-grown soybean (Glycine max L. Merr. cv Williams) seedlings were separated by polyacrylamide gel electrophoresis. Three isoforms of glutamate dehydrogenase (CDH) were resolved and visualized i n gels stained for C D H activity. Two isoforms with high electrophoretic mobility, C D H l and CDH2, were in protein extracts from cotyledons and a third isoform with the lowest electrophoretic mobility, CDH3, was identified in protein extracts from root and hypocotyls. Subcellular fractionation of dark-grown soybean tissues demonstrated that CDH3 was associated with intact mitochondria. CDH3 was purified t o homogeneity, as determined by native and sodium dodecyl sulfate-polyacrylamide gels. The isoenzyme was composed of a single 42-kD subunit. The pH optima for the reductive amination and the oxidative deamination reactions were 8.0 and 9.3, respectively. At any given pH, C D H activity was 12-to 50-fold higher in the direction of reductive amination than in the direction of the oxidative deamination reaction. CDH3 had a cofactor preference for NAD(H) over NADP(H). The apparent Michaelis constant values for a-ketoglutarate, ammonium, and NADH at pH 8.0 were 3.6, 35.5, and 0.07 mM, respectively. The apparent Michaelis constant values for glutamate and NAD were 15.8 and 0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.