It has been proposed' that gene-regulatory circuits with virtually any desired property can be constructed from networks of simple regulatory elements. These properties, which include multistability and oscillations, have been found in specialized gene circuits such as the bacteriophage lambda switch and the Cyanobacteria circadian oscillator. However, these behaviours have not been demonstrated in networks of non-specialized regulatory components. Here we present the construction of a genetic toggle switch-a synthetic, bistable gene-regulatory network-in Escherichia coli and provide a simple theory that predicts the conditions necessary for bistability. The toggle is constructed from any two repressible promoters arranged in a mutually inhibitory network. It is flipped between stable states using transient chemical or thermal induction and exhibits a nearly ideal switching threshold. As a practical device, the toggle switch forms a synthetic, addressable cellular memory unit and has implications for biotechnology, biocomputing and gene therapy.
Transcription in eukaryotic cells has been described as quantal, with pulses of messenger RNA produced in a probabilistic manner. This description reflects the inherently stochastic nature of gene expression, known to be a major factor in the heterogeneous response of individual cells within a clonal population to an inducing stimulus. Here we show in Saccharomyces cerevisiae that stochasticity (noise) arising from transcription contributes significantly to the level of heterogeneity within a eukaryotic clonal population, in contrast to observations in prokaryotes, and that such noise can be modulated at the translational level. We use a stochastic model of transcription initiation specific to eukaryotes to show that pulsatile mRNA production, through reinitiation, is crucial for the dependence of noise on transcriptional efficiency, highlighting a key difference between eukaryotic and prokaryotic sources of noise. Furthermore, we explore the propagation of noise in a gene cascade network and demonstrate experimentally that increased noise in the transcription of a regulatory protein leads to increased cell-cell variability in the target gene output, resulting in prolonged bistable expression states. This result has implications for the role of noise in phenotypic variation and cellular differentiation.
Cell-free fetal DNA is present in the plasma of pregnant women. It consists of short DNA fragments among primarily maternally derived DNA fragments. We sequenced a maternal plasma DNA sample at up to 65-fold genomic coverage. We showed that the entire fetal and maternal genomes were represented in maternal plasma at a constant relative proportion. Plasma DNA molecules showed a predictable fragmentation pattern reminiscent of nuclease-cleaved nucleosomes, with the fetal DNA showing a reduction in a 166-base pair (bp) peak relative to a 143-bp peak, when compared with maternal DNA. We constructed a genome-wide genetic map and determined the mutational status of the fetus from the maternal plasma DNA sequences and from information about the paternal genotype and maternal haplotype. Our study suggests the feasibility of using genome-wide scanning to diagnose fetal genetic disorders prenatally in a noninvasive way.
Microtubule assembly is enhanced by the addition of 1 M sucrose or 4 M glycerol to the reassembly mixture. Tubulin can be purified from guinea pig brain readily and in good yield by two cycles of assembly in glycerol-containing solutions. The tubules assembled in glycerol and sucrose are more stable than tubules formed in the absence of these compounds. Assembly occurs in glycerol or sucrose in the absence of ATP or GTP, but is greatly accelarated by their presence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.