Aristolochic acids (AAs) are a structurally-related family of nephrotoxic and carcinogenic nitrophenanthrene compounds found in Aristolochia herbaceous plants, many of which have been used worldwide for medicinal purposes. AAs have been implicated in the etiology of so-called Chinese herbs nephropathy and of Balkan endemic nephropathy. Both of these disease syndromes are associated with carcinomas of the upper urinary tract (UUC). 8-Methoxy-6-nitrophenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-I) is a principal component of Aristolochia herbs. Following metabolic activation, AA-I reacts with DNA to form aristolactam (AL-I)-DNA adducts. We have developed a sensitive analytical method, using ultra-performance liquid chromatography-electrospray ionization/multistage mass spectrometry (UPLC-ESI/MSn) with a linear quadrupole ion-trap mass spectrometer, to measure 7-(deoxyadenosin-N6-yl) aristolactam I (dA-AL-I) and 7-(deoxyguanosin-N2-yl) aristolactam I (dG-AL-I) adducts. Using 10 μg of DNA for measurements, the lower limits of quantitation of dA-AL-I and dG-AL-I are, respectively, 0.3 and 1.0 adducts per 108 DNA bases. We have used UPLC-ESI/MSn to quantify AL-DNA adducts in tissues of rodents exposed to AA, and in the renal cortex of patients with UUC who reside in Taiwan, where the incidence of this uncommon cancer is the highest reported for any country in the world. In human tissues, dA-AL-I was detected at levels ranging from 9 to 338 adducts per 108 DNA bases, whereas dG-AL-I was not found. We conclude that UPLC-ESI/MSn is a highly sensitive, specific and robust analytical method, positioned to supplant 32P-postlabeling techniques currently used for biomonitoring of DNA adducts in human tissues. Importantly, UPLC-ESI/MSn could be used to document exposure to AA, the toxicant responsible for AA nephropathy and its associated UUC.
The distribution and fate of neutral metabolites of the alkylphenol ethoxylate (APEO) surfactants in an urbanized estuarine environment were examined utilizing a recently developed, highly sensitive LC-MS method. Results indicated that short ethoxyl-chain APEOs and alkylphenols (APs) were present in surficial sediments throughout the estuary at concentrations roughly correlated to the organic carbon content of the sediment and that the APEO mixture was dominated by nonylphenol ethoxylate (NPEOs) metabolites (0.05-30 microg/g), with lesser amounts of octylphenol ethoxylate metabolites (OPEOs)(<0.005-0.09 microg/ g) and halogenated nonylphenols (<0.001-0.03 microg/g). NPEO metabolites in surface water (0.22-1.05 microg/L) were also present at higher concentrations than OPEO metabolites (0.007-0.040 microg/L). APEO metabolite concentrations in both sediment and water showed a strong correlation with conventional sewage tracers, affirming a wastewater source of these contaminants. APEO distributions in surface waters within the estuary could be explained by a combination of post-discharge degradation and mixing with a seawater end-member enriched in OPEO metabolites. Measured in situ Koc values of APEO metabolites were comparable to previously reported values derived from field experiments but higher than Kow and Koc values derived from laboratory experiments. Results from the present work indicate that the fate of APEO metabolites entering the estuarine environment through discharge of wastewater is directed primarily by scavenging onto particles and subsequent burial in sediments, degradation during residence in the water column, and transport out of the estuary through advective and dispersive processes.
Formamidopyrimidine-DNA glycosylase (Fpg) protein plays a prominent role in the repair of oxidatively damaged DNA in Escherichia coli. The protein possesses three enzymatic activities, hydrolysis of the N-glycosidic bond (DNA glycosylase), -elimination (AP lyase), and ␦-elimination; these functions act in a concerted manner to excise oxidized deoxynucleosides from duplex DNA. Schiff base formation between the enzyme and substrate has been demonstrated (Tchou, J., and Grollman, A. P. (1995) J. Biol. Chem. 270, 11671-11677); this protein-DNA complex can be trapped by reduction with sodium borohydride. By digesting the stable, covalently linked intermediate with proteases and determining the accurate mass of the products by negative electrospray ionization-mass spectrometry, we show that the N-terminal proline of Fpg protein is linked to DNA and, therefore, is identified as the nucleophile that initiates the catalytic excision of oxidized bases from DNA. This experimental approach may be applicable to the analysis of other protein-DNA complexes.Fpg 1 protein, a DNA base excision repair enzyme with Nglycosylase and AP lyase activities (1-3), efficiently removes 8-oxoguanine (8-oxoGua) and formamidopyrimidines from oxidatively damaged DNA (4 -7). We have shown previously (8) that this reaction involves an imino-enzyme-substrate (Schiff base) intermediate and that the amino group involved is located within a 72-amino acid fragment of Fpg protein containing the N terminus. The four-cysteine zinc finger motif located near the C terminus (9, 10) is utilized in binding oxidatively damaged DNA (10, 11). The 8-oxo moiety is a critical structural determinant by which Fpg protein recognizes duplex DNA substrates containing 8-oxoguanine (5).It has been proposed that Schiff bases participate in the catalytic action of AP endonucleases (12) and DNA glycosylases that possess AP lyase activity (13-16). Sodium borohydride and cyanoborohydride have been used to trap Schiff base intermediates as covalently linked DNA-protein complexes in reactions catalyzed by Fpg protein (8, 16) and by bacteriophage T4 endonuclease V, Micrococcus luteus UV endonuclease and Escherichia coli endonuclease III (15, 16). A mechanism involving nucleophilic attack on C1Ј of the modified deoxynucleoside targeted for excision (8,(15)(16)(17) has been proposed to explain the catalytic action of these enzymes. Nucleophilic attack, facilitated by protonation of the base, effects cleavage of the N-glycosidic bond. The AP lyase activity of Fpg protein is a concerted reaction involving -and ␦-elimination reactions (2, 18, 19), producing a gap in one strand of the duplex demarcated by 3Ј-and 5Ј-phosphate termini (2, 18).Several nucleophiles capable of forming Schiff base intermediates (20) are located within the 72-residue N-terminal fragment of Fpg protein. Basic nitrogen functional groups are found in the N-terminal proline, the free amino group of Lys-56, and eight arginine residues. Following enzymatic digestion of the covalently linked complex, we used elect...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.