Transcription activator-like effector nucleases (TALENs) are programmable nucleases that join FokI endonuclease with the modular DNA-binding domain of TALEs. Although zinc-finger nucleases enable a variety of genome modifications, their application to genetic engineering of livestock has been slowed by technical limitations of embryo-injection, culture of primary cells, and difficulty in producing reliable reagents with a limited budget. In contrast, we found that TALENs could easily be manufactured and that over half (23/36, 64%) demonstrate high activity in primary cells. Cytoplasmic injections of TALEN mRNAs into livestock zygotes were capable of inducing gene KO in up to 75% of embryos analyzed, a portion of which harbored biallelic modification. We also developed a simple transposon coselection strategy for TALEN-mediated gene modification in primary fibroblasts that enabled both enrichment for modified cells and efficient isolation of modified colonies. Coselection after treatment with a single TALEN-pair enabled isolation of colonies with mono-and biallelic modification in up to 54% and 17% of colonies, respectively. Coselection after treatment with two TALEN-pairs directed against the same chromosome enabled the isolation of colonies harboring large chromosomal deletions and inversions (10% and 4% of colonies, respectively). TALEN-modified Ossabaw swine fetal fibroblasts were effective nuclear donors for cloning, resulting in the creation of miniature swine containing mono-and biallelic mutations of the LDL receptor gene as models of familial hypercholesterolemia. TALENs thus appear to represent a highly facile platform for the modification of livestock genomes for both biomedical and agricultural applications.Tal-effector nuclease | biotechnology | gene-editing
Genome editing tools enable efficient and accurate genome manipulation. An enhanced ability to modify the genomes of livestock species could be utilized to improve disease resistance, productivity or breeding capability as well as the generation of new biomedical models. To date, with respect to the direct injection of genome editor mRNA into livestock zygotes, this technology has been limited to the generation of pigs with edited genomes. To capture the far-reaching applications of gene-editing, from disease modelling to agricultural improvement, the technology must be easily applied to a number of species using a variety of approaches. In this study, we demonstrate zygote injection of TALEN mRNA can also produce gene-edited cattle and sheep. In both species we have targeted the myostatin (MSTN) gene. In addition, we report a critical innovation for application of gene-editing to the cattle industry whereby gene-edited calves can be produced with specified genetics by ovum pickup, in vitro fertilization and zygote microinjection (OPU-IVF-ZM). This provides a practical alternative to somatic cell nuclear transfer for gene knockout or introgression of desirable alleles into a target breed/genetic line.
This study compared the nuclear transfer (NT) embryo development rates of adult and fetal cells within the same genotype. The adult fibroblast cells were obtained from a 21-yr-old Brahman bull. The fetal cells were derived from a Day 40 NT fetus previously cloned using cells from the Brahman bull. Overall, similar numbers of blastocysts developed from both adult (53 of 190; 28%) and fetal (39 of 140; 28%) donor cells. Improved blastocyst development rates were observed when fetal cells were serum-starved (serum-fed 12% vs. serum-starved 43%; P < 0.01) whereas there was no similar benefit when adult cells were serum-starved (both serum-fed and serum-starved 28%). Day 30 pregnancy rates were similar for blastocysts derived from adult (6 of 26; 23%) or fetal (5 of 32; 16%) cells. Day 90 pregnancy rates were 3 of 26 for adult and 0 of 32 for the fetal cell lines. One viable bull calf derived from a 21-yr-old serum-starved adult skin fibroblast was born in August 1999. In summary, somatic NT embryo development rates were similar whether adult or fetal cells, from the same genotype, were used as donor cells. Serum starvation of these adult donor cells did not improve development rates of NT embryos to blastocyst, but when fetal cells were serum-starved, there was a significant increase in development to blastocyst.
Pig embryos suffer severe sensitivity to hypothermic conditions, which limits their ability to withstand conventional cryopreservation. Research has focused on high lipid content of pig embryos and its role in hypothermic sensitivity, while little research has been conducted on structural damage. Documenting cytoskeletal disruption provides information on embryonic sensitivity and cellular response to cryopreservation. The objectives of this study were to document microfilament (MF) alterations during swine embryo vitrification, to utilize an MF inhibitor during cryopreservation to stabilize MF, and to determine the developmental competence of cytoskeletal-stabilized and vitrified pig embryos. Vitrified morulae/early blastocysts displayed MF disruptions and lacked developmental competence after cryopreservation; hatched blastocysts displayed variable MF disruption and developmental competence. Cytochalasin-b did not improve morula/early blastocyst viability after vitrification; however, it significantly (P < 0.05) improved survival and development of expanded and hatched blastocysts. After embryo transfer, we achieved pregnancy rates of almost 60%, and litter sizes improved from 5 to 7.25 piglets per litter. This study shows that the pig embryo cytoskeleton can be affected by vitrification and that MF depolymerization prior to vitrification improves blastocyst developmental competence after cryopreservation. After transfer, vitrified embryos can produce live, healthy piglets that grow normally and when mature are of excellent fecundity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.