Biologging technologies are changing the way in which the marine environment is observed and monitored. However, because device retrieval is typically required to access the high‐resolution data they collect, their use is generally restricted to those animals that predictably return to land. Data abstraction and transmission techniques aim to address this, although currently these are limited in scope and do not incorporate, for example, acceleration measurements which can quantify animal behaviours and movement patterns over fine‐scales.In this study, we present a new method for the collection, abstraction and transmission of accelerometer data from free‐ranging marine predators via the Argos satellite system. We test run the technique on 20 juvenile southern elephant seals Mirounga leonina from the Kerguelen Islands during their first months at sea following weaning. Using retrieved archival data from nine individuals that returned to the colony, we compare and validate abstracted transmissions against outputs from established accelerometer processing procedures.Abstracted transmissions included estimates, across five segments of a dive profile, of time spent in prey catch attempt (PrCA) behaviours, swimming effort and pitch. These were then summarised and compared to archival outputs across three dive phases: descent, bottom and ascent. Correlations between the two datasets were variable but generally good (dependent on dive phase, marginal R
2 values of between .45 and .6 to >.9) and consistent between individuals. Transmitted estimates of PrCA behaviours and swimming effort were positively biased to those from archival processing.Data from this study represent some of the first remotely transmitted quantifications from accelerometers. The methods presented and analysed can be used to provide novel insight towards the behaviours and movements of free‐ranging marine predators, such as juvenile southern elephant seals, from whom logger retrieval is challenging. Future applications could however benefit from some adaption, particularly to reduce positive bias in transmitted PrCA behaviours and swimming effort, for which this study provides useful insight.
Innovative fish diets made of terrestrial plants supplemented with sustainable protein sources free of fish-derived proteins could contribute to reducing the environmental impact of the farmed fish industry. However, such alternative diets may influence fish gut microbial community, health, and, ultimately, growth performance. Here, we developed five fish feed formulas composed of terrestrial plant-based nutrients, in which fish-derived proteins were substituted with sustainable protein sources, including insect larvae, cyanobacteria, yeast, or recycled processed poultry protein. We then analyzed the growth performance of European sea bass (Dicentrarchus labrax L.) and the evolution of gut microbiota of fish fed the five formulations. We showed that replacement of 15% protein of a vegetal formulation by insect or yeast proteins led to a significantly higher fish growth performance and feed intake when compared with the full vegetal formulation, with feed conversion ratio similar to a commercial diet. 16S rRNA gene sequencing monitoring of the sea bass gut microbial community showed a predominance of Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes phyla. The partial replacement of protein source in fish diets was not associated with significant differences on gut microbial richness. Overall, our study highlights the adaptability of European sea bass gut microbiota composition to changes in fish diet and identifies promising alternative protein sources for sustainable aquafeeds with terrestrial vegetal complements.
Assessment of Individual Feed Efficiency an equal feeding rate. When feed efficiency was studied in fish fed at 100% ADL, the temperature effect disappeared but the population effect remained. This highlights the complex interplay between population, temperature and feeding rate when evaluating individual feed efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.