Although working memory (WM) training programs consistently result in improvement on the trained task, benefit is typically short-lived and extends only to tasks very similar to the trained task (i.e., near transfer). It is possible that pairing repeated performance of a WM task with brain stimulation encourages plasticity in brain networks involved in WM task performance, thereby improving the training benefit. In the current study, transcranial direct current stimulation (tDCS) was paired with performance of a WM task (n-back). In Experiment 1, participants performed a spatial location-monitoring n-back during stimulation, while Experiment 2 used a verbal identity-monitoring n-back. In each experiment, participants received either active (2.0mA) or sham (0.1mA) stimulation with the anode placed over either the right or the left dorsolateral prefrontal cortex (DLPFC) and the cathode placed extracephalically. In Experiment 1, only participants receiving active stimulation with the anode placed over the right DLPFC showed marginal improvement on the trained spatial n-back, which did not extend to a near transfer (verbal n-back) or far transfer task (a matrix-reasoning task designed to measure fluid intelligence). In Experiment 2, both left and right anode placements led to improvement, and right DLPFC stimulation resulted in numerical (though not sham-adjusted) improvement on the near transfer (spatial n-back) and far transfer (fluid intelligence) task. Results suggest that WM training paired with brain stimulation may result in cognitive enhancement that transfers to performance on other tasks, depending on the combination of training task and tDCS parameters used.
ABSTRACT. Objective:This secondary data analysis examined patterns of drinking during alcohol treatment and associated drinking outcomes during the first year following treatment. The goal was to provide clinicians with guidance on which patients may be most at risk for negative long-term outcomes based on drinking patterns during treatment. Method: This study was an analysis of existing data (N = 3,851) from three randomized clinical trials for alcohol use disorder: the COMBINE Study (n = 1,383), Project MATCH (n = 1,726), and the United Kingdom Alcohol Treatment Trial (n = 742). Indicators of abstinence, non-heavy drinking, and heavy drinking (defined as 4/5 or more drinks per day for women/men) were examined during each week of treatment using repeated-measures latent class analysis. Associations between drinking patterns during treatment and drinking intensity, drinking consequences, and physical and mental health 12 months following intake were examined. Results: Seven drinking patterns were identified. Patients who engaged in persistent heavy drinking throughout treatment and those who returned to persistent heavy drinking during treatment had the worst long-term outcomes. Patients who engaged in some heavy drinking during treatment had better long-term outcomes than persistent heavy drinkers. Patients who reported low-risk drinking or abstinence had the best long-term outcomes. There were no differences in outcomes between low-risk drinkers and abstainers. Conclusions: Abstinence, low-risk drinking, or even some heavy drinking during treatment are associated with the best long-term outcomes. Patients who are engaging in persistent heavy drinking are likely to have the worst outcomes and may require a higher level of care. (J. Stud. Alcohol Drugs, 78, 59-69, 2017)
Aim Heightened craving among individuals with alcohol use disorder (AUD) has been attributed to a hypersensitivity to alcohol cues in attentional brain networks. Active mindfulness training has been shown to help improve attentional control. Here, we examined alcohol cue-related hypersensitivity among individuals with AUD who received rolling group mindfulness-based relapse prevention (MBRP) in combination with transcranial direct current stimulation (tDCS), over right inferior frontal gyrus. Methods Participants (n = 68) viewed a series of emotionally negative, emotionally neutral and alcohol-related images. Following image presentation, participants were asked to rate their level of craving for the alcohol cues, and their level of negative affect evoked by neutral and negative cues. During the task, electroencephalogram (EEG) was recorded to capture an event-related component shown to relate to emotionally salient stimuli: the late positive potential (LPP). Participants who completed a follow-up EEG (n = 37) performed the task a second time after up to eight sessions of MBRP coupled with active or sham tDCS. Results We found that both craving ratings and the LPP significantly decreased in response to alcohol cues from pre- to post-treatment, but not for other image cues. The magnitude of alcohol image craving reductions was associated with the number of MBRP group sessions attended. Active tDCS was not associated with craving ratings, but it was associated with greater LPP amplitudes across image types. Conclusions Taken together, these results suggest that disruption of alcohol-cue hypersensitivity in people with AUD may be a target mechanism of MBRP.
Sleep is critically important to consolidate information learned throughout the day. Slow-wave sleep (SWS) serves to consolidate declarative memories, a process previously modulated with open-loop non-invasive electrical stimulation, though not always effectively. These failures to replicate could be explained by the fact that stimulation has only been performed in open-loop, as opposed to closed-loop where phase and frequency of the endogenous slow-wave oscillations (SWOs) are matched for optimal timing. The current study investigated the effects of closed-loop transcranial Alternating Current Stimulation (tACS) targeting SWOs during sleep on memory consolidation. 21 participants took part in a three-night, counterbalanced, randomized, single-blind, within-subjects study, investigating performance changes (correct rate and F1 score) on images in a target detection task over 24 h. During sleep, 1.5 mA closed-loop tACS was delivered in phase over electrodes at F3 and F4 and 180° out of phase over electrodes at bilateral mastoids at the frequency (range 0.5–1.2 Hz) and phase of ongoing SWOs for a duration of 5 cycles in each discrete event throughout the night. Data were analyzed in a repeated measures ANOVA framework, and results show that verum stimulation improved post-sleep performance specifically on generalized versions of images used in training at both morning and afternoon tests compared to sham, suggesting the facilitation of schematization of information, but not of rote, veridical recall. We also found a surprising inverted U-shaped dose effect of sleep tACS, which is interpreted in terms of tACS-induced faciliatory and subsequent refractory dynamics of SWO power in scalp EEG. This is the first study showing a selective modulation of long-term memory generalization using a novel closed-loop tACS approach, which holds great potential for both healthy and neuropsychiatric populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.