BackgroundWe previously found that Transcranial Direct Current Stimulation (tDCS) improves learning and performance in a task where subjects learn to detect potential threats indicated by small target objects hidden in a complex virtual environment. In the present study, we examined the hypothesis that these effects on learning and performance are related to changes in attention. The effects of tDCS were tested for three forms of attention (alerting, orienting, and executive attention) using the Attention Network Task (ANT), which were compared with performance on the object-learning task.ResultsParticipants received either 0.1 mA (N = 10) or 2.0 mA (N = 9) tDCS during training and were tested for performance in object-identification before training (baseline-test) and again immediately after training (immediate test). Participants next performed the Attention Networks Task (ANT), and were later tested for object-identification performance a final time (delayed test). Alerting, but not orienting or executive attention, was significantly higher for participants receiving 2.0 mA compared with 0.1 mA tDCS (p < 0.02). Furthermore, alerting scores were significantly correlated with the proportion of hits (p < 0.01) for participants receiving 2.0 mA.ConclusionsThese results indicate that tDCS enhancement of performance in this task may be related in part to the enhancement of alerting attention, which may benefit the initial identification, learning and/or subsequent recognition of target objects indicating potential threats.
Transcranial direct current stimulation (tDCS) modulates glutamatergic neurotransmission and can be utilized as a novel treatment intervention for a multitude of populations. However, the exact mechanism by which tDCS modulates the brain’s neural architecture, from the micro to macro scales, have yet to be illuminated. Using a within-subjects design, resting-state functional magnetic resonance imaging (rs-fMRI) and proton magnetic resonance spectroscopy (1H-MRS) were performed immediately before and after the administration of anodal tDCS over right parietal cortex. Group independent component analysis (ICA) was used to decompose fMRI scans into 75 brain networks, from which 12 resting-state networks were identified that had significant voxel-wise functional connectivity to anatomical regions of interest. 1H-MRS was used to obtain estimates of combined glutamate and glutamine (Glx) concentrations from bilateral intraparietal sulcus. Paired sample t-tests showed significantly increased Glx under the anodal electrode, but not in homologous regions of the contralateral hemisphere. Increases of within-network connectivity were observed within the superior parietal, inferior parietal, left frontal-parietal, salience and cerebellar intrinsic networks, and decreases in connectivity were observed in the anterior cingulate and the basal ganglia (p < 0.05, FDR-corrected). Individual differences in Glx concentrations predicted network connectivity in most of these networks. The observed relationships between glutamatergic neurotransmission and network connectivity may be used to guide future tDCS protocols that aim to target and alter neuroplastic mechanisms in healthy individuals as well as those with psychiatric and neurologic disorders.
Prior work demonstrates that application of transcranial direct current stimulation (tDCS) improves memory. In this study, we investigated tDCS effects on face-name associative memory using both recall and recognition tests. Participants encoded face-name pairs under either active (1.5mA) or sham (.1mA) stimulation applied to the scalp adjacent to the left dorsolateral prefrontal cortex (dlPFC), an area known to support associative memory. Participants' memory was then tested after study (day one) and then again after a 24-h delay (day two), to assess both immediate and delayed stimulation effects on memory. Results indicated that active relative to sham stimulation led to substantially improved recall (more than 50%) at both day one and day two. Recognition memory performance did not differ between stimulation groups at either time point. These results suggest that stimulation at encoding improves memory performance by enhancing memory for details that enable a rich recollective experience, but that these improvements are evident only under some testing conditions, especially those that rely on recollection. Overall, stimulation of the dlPFC could have led to recall improvement through enhanced encoding from stimulation or from carryover effects of stimulation that influenced retrieval processes, or both.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.