Rationale Myocardial infarction (MI) is a leading cause of death in developed nations, and there remains a need for cardiac therapeutic systems that mitigate tissue damage and. Cardiac progenitor cells (CPCs) and other stem cell types are attractive candidates for treatment of MI; however, the benefit of these cells may be due to paracrine effects. Objective We tested the hypothesis that CPCs secrete pro-regenerative exosomes in response to hypoxic conditions. Methods and Results The angiogenic and anti-fibrotic potential of secreted exosomes on cardiac endothelial cells and cardiac fibroblasts were assessed. We found that CPC exosomes secreted in response to hypoxia enhanced tube formation of endothelial cells and decreased pro-fibrotic gene expression in TGF-β stimulated fibroblasts, indicating that these exosomes possess therapeutic potential. Microarray analysis of exosomes secreted by hypoxic CPCs identified eleven miRNAs that were upregulated compared to exosomes secreted by CPCs grown under normoxic conditions. Principle component analysis was performed to identify miRNAs that were co-regulated in response to distinct exosome generating conditions. To investigate the cue-signal-response relationships of these miRNA clusters with a physiological outcome of tube formation or fibrotic gene expression, partial least squares regression analysis was applied. The importance of each up- or downregulated miRNA on physiological outcomes was determined. Finally, to validate the model we delivered exosomes following ischemia-reperfusion injury. Exosomes from hypoxic CPCs improved cardiac function and reduced fibrosis. Conclusions These data provide a foundation for subsequent research of the use of exosomal miRNA and systems biology as therapeutic strategies for the damaged heart.
Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes in EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 hrs, 15 dynes/cm2) identified 13 miRNAs whose expression was significantly upregulated (p < 0.05). The miRNA with the greatest change was miR-21; it was increased 5.2-fold (p = 0.002) in USStreated versus control cells. Western analysis demonstrated that PTEN, a known target of miR-21, was downregulated in HUVECs exposed to USS or transfected with pre-miR-21. Importantly, HUVECs overexpressing miR-21 had decreased apoptosis and increased eNOS phosphorylation and nitric oxide (NO) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.
Numerous aspects of vascular homeostasis are modulated by nitric oxide and reactive oxygen species (ROS). The production of these is dramatically influenced by mechanical forces imposed on the endothelium and vascular smooth muscle. In this review, we will discuss the effects of mechanical forces on the expression of the endothelial cell nitric oxide synthase, production of ROS and modulation of endothelial cell glutathione. We will also review data that exercise training in vivo has a similar effect as laminar shear on endothelial function and discuss the clinical relevance of these basic findings.
The ability of the endothelium to produce nitric oxide is essential to maintenance of vascular homeostasis; disturbance of this ability is a major contributor to the pathogenesis of vascular disease. In vivo studies have demonstrated that expression of endothelial nitric oxide synthase (eNOS) is vital to endothelial function and have led to the understanding that eNOS expression is subject to modest but significant degrees of regulation. Subsequently, numerous physiological and pathophysiological stimuli have been identified that modulate eNOS expression via mechanisms that alter steady-state eNOS mRNA levels. These mechanisms involve changes in the rate of eNOS gene transcription (transcriptional regulation) and alteration of eNOS mRNA processing and stability (posttranscriptional regulation). In cultured endothelial cells, shear stress, transforming growth factor-beta1, lysophosphatidylcholine, cell growth, oxidized linoleic acid, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, and hydrogen peroxide have been shown to increase eNOS expression. In contrast, tumor necrosis factor-alpha, hypoxia, lipopolysaccaride, thrombin, and oxidized LDL can decrease eNOS mRNA levels. For many of these stimuli, both transcriptional and posttranscriptional mechanisms contribute to regulation of eNOS expression. Recent studies have begun to further define signaling pathways responsible for changes in eNOS expression and have characterized cis- and trans-acting regulatory elements. In addition, a role has been identified for epigenetic control of eNOS mRNA levels. This review will discuss transcriptional and posttranscriptional regulation of eNOS with emphasis on the molecular mechanisms that have been identified for these processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.