The effects of selenium, an essential nutrient with anti-carcinogenic properties, are mediated by selenium-binding proteins. The protein expression status of human selenium-binding protein 1 (SBP1) in human tumours and the exact function of this protein are not known. In this study, quantitative two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) was used on 93 lung adenocarcinomas and ten uninvolved lung samples. Two likely isoforms of a 56 kD protein that showed a significantly decreased abundance in lung adenocarcinomas were observed. Tandem mass spectrometry and 2-D western blot analysis identified these two proteins as human SBP1. Tumour tissue microarrays were utilized to examine the cellular expression patterns of SBP1 using immunohistochemistry. The same tissue samples were examined for SBP1 mRNA expression using oligonucleotide microarrays. Two major SBP1 isoforms were detected, with an acidic isoform (457) being significantly down-regulated in lung adenocarcinomas compared with normal lung (p = 0.02). Two additional more acidic SBP1 isoforms were only observed in normal lung. SBP1 protein isoforms and SBP1 mRNA levels were significantly decreased in poorly differentiated (versus moderately and well-differentiated), T2-T4 (versus T1), and bronchus-derived (versus bronchioloalveolar) tumours. Low levels of SBP1 protein (native form, 460) correlated significantly with poor survival (p = 0.007). The lack of SBP1 expression was not due to gene deletion. Treatment of A549 lung adenocarcinoma cells with the methylation inhibitor 5-azacytidine did not affect expression of the SBP1 protein. Analysis of the tumour proliferation status using Ki-67 suggests that down-regulated expression of SBP1 may reflect increased cell proliferation and decreased differentiation in lung adenocarcinomas.
Esophageal adenocarcinoma (EA) is characterized by a poor prognosis making the identification of clinically targetable proteins essential for improving patient outcome. We report the involvement of multiple alterations of the MET pathway in EA development and progression. Microarray analysis of Barrett's metaplasia, dysplasia, and EA revealed overexpression of the MET oncogene in EAs but only those with MET gene amplification. STSamplification mapping revealed that the boundary of the MET amplicon in these EAs is defined by fragile site FRA7G. We also identified an amplicon at 11p13 that resulted in amplification and overexpression of CD44, a gene involved in MET autophosphorylation upon HGF stimulation. Tissue microarrays with phospho-METspecific antibodies demonstrated a uniformly high abundance of MET activation in primary EA and cells metastatic to lymph nodes but to a lesser extent in a subset of metaplastic and dysplastic Barrett's samples. Increased expression of multiple genes in the MET pathway associated with invasive growth, for example, many MMPs and osteopontin, also was found in EAs. Treatment of EA-derived cell lines with geldanamycin, an inhibitor for tyrosine kinases including MET receptor kinase, reduced cell migration and induced EA cell apoptosis. The data indicate that upregulation of the MET pathway may contribute to the poor outcome of EA patients and that therapeutic agents targeting this pathway may help improve patient survival.
The C-CRK gene, cellular homolog of the avian v-crk oncogene, encodes two alternatively spliced adaptor signaling proteins, CRKI (28 kDa) and CRKII (40 kDa). Both CRKI and CRKII have been shown to activate kinase signaling and anchorage-independent growth in vitro and CRKI transformed cells readily form tumors in nude mice. Affymetrix oligonucleotide arrays were used to analyse 86 lung adenocarcinomas and 10 uninvolved lung tissues. C-CRK mRNA expression was increased in more advanced (stage III versus stage I), larger (T 2-4 versus T 1 ), and poorly differentiated tumors and in tumors from patients demonstrating poor survival (P ¼ 0.00034). An overlapping series of 93 lung adenocarcinomas (64 stage I and 29 stage III) and 10 uninvolved lung specimens were measured for quantitative differences in CRKI and CRKII protein levels using 2-D PAGE. CRK protein spots were identified using mass spectrometry and 2-D Western blotting. A significant increase in levels of the CRKI oncoprotein and the phosphorylated isoform of CRKII was observed in tumors (Po0.05). No difference in protein level was evident between stages. Concordant with mRNA expression, CRKI and CRKII were increased in poorly differentiated tumors (Po0.05). CRK immunohistochemical analysis of tumor tissue arrays using the same tumor series also demonstrated increased abundance of nuclear and cytoplasmic CRK in more proliferative tumors (Po0.05). This study provides the first quantitative analysis of discrete CRKI and CRKII protein isoforms in human lung tumors and provides evidence that the C-CRK proto-oncogene may foment a more aggressive phenotype in lung cancers.
Dbf4p is an essential regulatory subunit of the Cdc7p kinase required for the initiation of DNA replication. Cdc7p and Dbf4p orthologs have also been shown to function in the response to DNA damage. A previous Dbf4p multiple sequence alignment identified a conserved 40-residue N-terminal region with similarity to the BRCA1 C-terminal (BRCT) motif called ''motif N.'' BRCT motifs encode 100-amino-acid domains involved in the DNA damage response. We have identified an expanded and conserved 100-residue N-terminal region of Dbf4p that includes motif N but is capable of encoding a single BRCT-like domain. Dbf4p orthologs diverge from the BRCT motif at the C terminus but may encode a similar secondary structure in this region. We have therefore called this the BRCT and DBF4 similarity (BRDF) motif. The principal role of this Dbf4p motif was in the response to replication fork (RF) arrest; however, it was not required for cell cycle progression, activation of Cdc7p kinase activity, or interaction with the origin recognition complex (ORC) postulated to recruit Cdc7p-Dbf4p to origins. Rad53p likely directly phosphorylated Dbf4p in response to RF arrest and Dbf4p was required for Rad53p abundance. Rad53p and Dbf4p therefore cooperated to coordinate a robust cellular response to RF arrest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.