Fusarium ear rot is a common disease of maize that affects food and feed quality globally. Resistance to the disease is highly quantitative, and maize breeders have difficulty incorporating polygenic resistance alleles from unadapted donor sources into elite breeding populations without having a negative impact on agronomic performance. Identification of specific allele variants contributing to improved resistance may be useful to breeders by allowing selection of resistance alleles in coupling phase linkage with favorable agronomic characteristics. We report the results of a genome-wide association study to detect allele variants associated with increased resistance to Fusarium ear rot in a maize core diversity panel of 267 inbred lines evaluated in two sets of environments. We performed association tests with 47,445 single-nucleotide polymorphisms (SNPs) while controlling for background genomic relationships with a mixed model and identified three marker loci significantly associated with disease resistance in at least one subset of environments. Each associated SNP locus had relatively small additive effects on disease resistance (±1.1% on a 0–100% scale), but nevertheless were associated with 3 to 12% of the genotypic variation within or across environment subsets. Two of three identified SNPs colocalized with genes that have been implicated with programmed cell death. An analysis of associated allele frequencies within the major maize subpopulations revealed enrichment for resistance alleles in the tropical/subtropical and popcorn subpopulations compared with other temperate breeding pools.
BackgroundResistance to Fusarium ear rot of maize is a quantitative and complex trait. Marker-trait associations to date have had small additive effects and were inconsistent between previous studies, likely due to the combined effects of genetic heterogeneity and low power of detection of many small effect variants. The complexity of inheritance of resistance hinders the use marker-assisted selection for ear rot resistance.ResultsWe conducted a genome-wide association study (GWAS) for Fusarium ear rot resistance in a panel of 1687 diverse inbred lines from the USDA maize gene bank with 200,978 SNPs while controlling for background genetic relationships with a mixed model and identified seven single nucleotide polymorphisms (SNPs) in six genes associated with disease resistance in either the complete inbred panel (1687 lines with highly unbalanced phenotype data) or in a filtered inbred panel (734 lines with balanced phenotype data). Different sets of SNPs were detected as associated in the two different data sets. The alleles conferring greater disease resistance at all seven SNPs were rare overall (below 16%) and always higher in allele frequency in tropical maize than in temperate dent maize. Resampling analysis of the complete data set identified one robust SNP association detected as significant at a stringent p-value in 94% of data sets, each representing a random sample of 80% of the lines. All associated SNPs were in exons, but none of the genes had predicted functions with an obvious relationship to resistance to fungal infection.ConclusionsGWAS in a very diverse maize collection identified seven SNP variants each associated with between 1% and 3% of trait variation. Because of their small effects, the value of selection on these SNPs for improving resistance to Fusarium ear rot is limited. Selection to combine these resistance alleles combined with genomic selection to improve the polygenic background resistance might be fruitful. The genes associated with resistance provide candidate gene targets for further study of the biological pathways involved in this complex disease resistance.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-014-0372-6) contains supplementary material, which is available to authorized users.
The fungus Fusarium verticillioides can infect maize ears, causing Fusarium ear rot (FER) and contaminating the grain with fumonisins (FUM), which are harmful to humans and animals. Breeding for resistance to FER and FUM and post-harvest sorting of grain are two strategies for reducing FUM in the food system. Kernel and cob tissues have been previously associated with differential FER and FUM. Four recombinant inbred line families from the maize nested associated mapping population were grown and inoculated with F. verticillioides across four environments, and we evaluated the kernels for external and internal infection severity as well as FUM contamination. We also employed publicly available phenotypes on innate ear morphology to explore genetic relationships between ear architecture and resistance to FER and FUM. The four families revealed wide variation in external symptomatology at the phenotypic level. Kernel bulk density under inoculation was an accurate indicator of FUM levels. Genotypes with lower kernel density—under both inoculated and uninoculated conditions—and larger cobs were more susceptible to infection and FUM contamination. Quantitative trait locus (QTL) intervals could be classified as putatively resistance-specific and putatively shared for ear and resistance traits. Both types of QTL mapped in this study had substantial overlap with previously reported loci for resistance to FER and FUM. Ear morphology may be a component of resistance to F. verticillioides infection and FUM accumulation.
Tropical maize [Zea mays L.) represents a valuable genetic resource containing unique alíeles not present in elite temperate maize. The strong delay in flowering in response to long daylength photoperiods exhibited by most tropical maize hinders its incorporation into temperate maize breeding programs. We tested the hypothesis that diverse tropical inbreds carry alíeles with similar effects at four key photoperiod response quantitative trait loci (QTL) previously identified in maize. Four tropical maize inbreds were each crossed and backcrossed twice to the temperate recurrent parent B73 to establish four sets of introgression lines. Evaluation of these lines under long daylengths demonstrated that all four QTL have significant effects on flowering time or height in these lines, but the functional allelic effects varied substantially across the tropical donor lines. At the most important photoperiod response QTL on chromosome 10, one tropical line alíele even promoted earlier flowering relative to the B73 alíele. Significant allelic effect differences among tropical founders were also demonstrated directly in an F^ population derived from the cross of Ki14 and CML254. The chromosome 10 photoperiod response QTL position was validated in a set of heterogeneous inbred families evaluated in field tests and in controlled environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.