Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
This paper reviews the occurrence of antimicrobial resistance (AMR) in insects, rodents, and pets. Insects (e.g., houseflies, cockroaches), rodents (rats, mice), and pets (dogs, cats) act as reservoirs of AMR for first-line and last-resort antimicrobial agents. AMR proliferates in insects, rodents, and pets, and their skin and gut systems. Subsequently, insects, rodents, and pets act as vectors that disseminate AMR to humans via direct contact, human food contamination, and horizontal gene transfer. Thus, insects, rodents, and pets might act as sentinels or bioindicators of AMR. Human health risks are discussed, including those unique to low-income countries. Current evidence on human health risks is largely inferential and based on qualitative data, but comprehensive statistics based on quantitative microbial risk assessment (QMRA) are still lacking. Hence, tracing human health risks of AMR to insects, rodents, and pets, remains a challenge. To safeguard human health, mitigation measures are proposed, based on the one-health approach. Future research should include human health risk analysis using QMRA, and the application of in-silico techniques, genomics, network analysis, and ’big data’ analytical tools to understand the role of household insects, rodents, and pets in the persistence, circulation, and health risks of AMR.
Background.Developing countries such as Zimbabwe deal with challenges in solid waste management such as insufficient waste recycling, hazardous wastes that are not separated for safe disposal, and landfills that are not properly engineered to prevent groundwater pollution. For these reasons, landfills in developing countries pose serious environmental and public health hazards.Objectives.The objective of this study was to assess heavy metal release and groundwater pollution from an unlined landfill in Bulawayo, Zimbabwe. The purpose of the study was to explore environmental and public health risks posed by improperly managed landfills in developing countries.Methods.We assessed levels of metal release from Richmond landfill in the city of Bulawayo, Zimbabwe by measuring lead, cadmium, chromium and copper levels in landfill soil, leachate and plants. We also monitored metal levels in groundwater from boreholes located in a residential area in the vicinity and downgradient of the landfill within a range of 800–2135 m. Soil was characterized at the landfill to assess potential sources of heavy metals.Results.All metals that were assessed were present in landfill soil and in leachate. There was high metal accumulation in weeds that were growing at the landfill, indicating mobility and bioavailability of the metals. Groundwater from nearby boreholes had high levels of lead (Pb) and cadmium (Cd) which were negatively correlated to distance from the landfill (p<0.01), indicating contamination from the landfill. The Pb and Cd levels exceeded World Health Organization standards for drinking water quality, posing health hazards to the communities who rely on the water. Solid waste at the landfill consisted of soft plastics (33%), hard plastics (18.6%), metals (3%), paper (8%), electronic waste (0.8%), organics (15.3%) and various other types (21.3%).Discussion.A combination of factors may be attributed to groundwater contamination. These include the co-disposal of metallic and electronic wastes at the landfill, lack of membrane lining at the landfill, inadequate leachate management and the porous geo-physical characteristics of the sub-surface at the landfill site.Conclusions.Our study highlights adverse environmental and public health consequences of co-disposal of metals and electronic wastes at improperly engineered municipal landfills. This is a ‘wake-up’ call for policy makers in developing countries to improve solid waste management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.