The advent of 5G will bring a massive adoption of IoT devices across our society. IoT Applications (IoT Apps) will be the primary data collection base. This scenario leads to unprecedented scalability and security challenges, with one of the first areas for these applications being Smart Cities (SC). IoT devices in new network paradigms, such as Edge Computing and Fog Computing, will collect data from urban environments, providing real-time management information. One of these challenges is ensuring that the data sent from Edge Computing are reliable. Blockchain has been a technology that has gained the spotlight in recent years, due to its robust security in fintech and cryptocurrencies. Its strong encryption and distributed and decentralized network make it potential for this challenge. Using Blockchain with IoT makes it possible for SC applications to have security information distributed, which makes it possible to shield against Distributed Denial of Service (DDOS). IoT devices in an SC can have a long life, which increases the chance of having security holes caused by outdated firmware. Adding a layer of identification and verification of attributes and signature of messages coming from IoT devices by Smart Contracts can bring confidence in the content. SC Apps that extract data from legacy and outdated appliances, installed in inaccessible, unknown, and often untrusted urban environments can benefit from this work. Our work’s main contribution is the development of API Gateways to be used in IoT devices and network gateway to sign, identify, and authorize messages. For this, keys and essential characteristics of the devices previously registered in Blockchain are used. We will discuss the importance of this implementation while considering the SC and present a testbed that is composed of Blockchain Ethereum and real IoT devices. We analyze the transfer time, memory, and CPU impacts during the sending and processing of these messages. The messages are signed, identified, and validated by our API Gateways and only then collected for an IoT data management application.
The use of deep learning on edge AI to detect failures in conveyor belts solves a complex problem of iron ore beneficiation plants. Losses in the order of thousands of dollars are caused by failures in these assets. The existing fault detection systems currently do not have the necessary efficiency and complete loss of belts is common. Correct fault detection is necessary to reduce financial losses and unnecessary risk exposure by maintenance personnel. This problem is addressed by the present work with the training of a deep learning model for detecting images of failures of the conveyor belt. The resulting model is converted and executed in an edge device located near the conveyor belt to stop it in case a failure is detected. The results obtained in the development and tests carried out to date show the feasibility of using Edge AI to solve complex problems in a mining environment such as detecting longitudinal rips and stimulate the continuity of the work considering new scenarios and operational conditions in the search for a robust and replicable solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.