Oysters modify the planktonic microbial community structure by their filtration and NH 4 excretion activities. While many studies have been conducted on this subject with adult oysters, none had been carried out in situ with juveniles. Pacific oyster juveniles (Magallana gigas, previously Crassostrea gigas) died massively all over the world since 2008 in relation with OsHV-1 infection. During mortality episodes, sick and dead oysters are not separated from healthy live ones, and left to decay in the surrounding environment, with unknown consequences for the nutrient cycle and planktonic microbial components (PMC). The present study aimed to elucidate for the first time the interactions between oyster juveniles and PMC during a mortality episode. Innovative 425-L pelagic chambers were deployed weekly in situ around oyster lanterns along a stocking-density gradient in the Thau Mediterranean lagoon (France) before, during and after an oyster mortality episode, from April to May 2015. This study reveals (i) significant changes of planktonic microbial community structure during mortality episodes, with a proliferation of picoplankton (<3 μm) and ciliates (Balanion sp., Uronema sp.) within 2 weeks when mortality rates and numbers of moribund juvenile oysters were highest. These changes were probably induced by oyster tissue leaching, decomposition and mineralization, which probably began during the moribund period, as suggested by an increase of PO 4 concentration and N:P ratio decrease, (ii) oyster juveniles mainly retained 3-20 μm plankton. In contrast to adults, picophytoplankton and small heterotrophic flagellates (<3 μm) were significantly depleted in the presence of oyster juveniles. Depletion of picoplankton occurred only at the starting of the mortality episode and during the moribund phase. (iii) Oyster juvenile filtration and mortality shifted the planktonic microbial structure toward a heterotrophic microbial system, where ciliates and heterotrophic flagellates acted as a trophic link between picoplankton and oysters. The next stage of our investigation is to examine the effect of a mortality episode on pathogen fluxes in the water column, exploring their relationships with planktonic Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site.components and dead oyster flesh. Highlights► The planktonic microbial components (PMC) change during OsHV-1 oyster juvenile mortality. ► Picophytoplankton and ciliates increase during infection and mortality periods. ► Filtration and mortality of juvenile oysters shift PMC toward a heterotrophic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.