In previous studies, repeated 5-s exposures of anesthetized pigs to an electronic control device (TASER International's Advanced TASER X26 device) resulted in acidosis and increases in blood electrolytes. In the current study, experiments were performed to investigate the effects of longer continuous exposures to a different electronic-control-device waveform. After intramuscular injection of tiletamine HCl and zolazepam HCl, anesthesia was maintained with propofol infusion. Ten pigs were exposed to either 30- or 60-s applications of an electronic waveform similar to the TASER-X26 device. Transient increases in potassium, and sodium were consistent with previous reports in the literature dealing with studies of muscle stimulation or exercise. Blood pH was significantly decreased after exposure, but subsequently returned to baseline levels. Lactate was highly elevated and remained somewhat increased even after three hrs. Serum myoglobin was increased after exposure and remained elevated for the 3-h follow-up period. Acidosis would appear to be one of the major concerns with long-duration (e.g., several min) exposures over a short period of time. Even with the extremely low pH immediately after exposure, all animals survived. On the basis of these results, further development of useful continuous-exposure electronic control devices is at least feasible, with the caveat that some medical monitoring of subjects may be required.
Although there is no evidence that electromagnetic energy in the radio frequency radiation (RFR) band is mutagenic, there have been suggestions that RFR energy might serve as either a promoter or co-promoter in some animal models of carcinogenesis. Recent developments in electromagnetic technology have resulted in the manufacture of RFR sources capable of generating frequencies in the millimeter wavelength (MMW) range (30-300 GHz). Because absorption of MMW energy occurs in the skin, it is to be expected that long-term detrimental health effects, if any, would most likely be manifest in the skin. In this study we investigated whether a single (1.0 W/cm(2) for 10 s) or repeated (2 exposures/week for 12 weeks, 333 mW/cm(2) for 10 s) exposure to 94 GHz RFR serves as a promoter or co-promoter in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced SENCAR mouse model of skin carcinogenesis. Neither paradigm of MMW exposure significantly affected papilloma development, as evidenced by a lack of effect on tumor incidence and multiplicity. There was also no evidence that MMW exposure served as a co-promoter in DMBA-induced animals repeatedly treated with 12-O-tetradecanoylphorbol 13-acetate. Therefore, we conclude that exposure to 94 GHz RFR under these conditions does not promote or co-promote papilloma development in this animal model of skin carcinogenesis.
Conducted energy weapons (such as the Advanced TASER X26 model produced by TASER International), incapacitate individuals by causing muscle contractions. To provide information relevant to development of future potential devices, a "Modifiable Electronic Stimulator" was used to evaluate the effects of changing various parameters of the stimulating pulse. Muscle contraction was affected by pulse power, net/gross charge, pulse duration, and pulse repetition frequency. The contraction force increased linearly as each of these factors was increased. Elimination of a precursor pulse from X26-like pulses did not have a significant effect on the normalized force measured. Muscle-contraction force increased as the spacing increased from 5 to 20 cm, with no further change in force above 20 cm of spacing. Therefore, it is suggested that any future developments of new conducted energy weapons should include placement of electrodes a minimum of 20 cm apart so that efficiency of the system is not degraded. In the current study, the 50% probability of fibrillation level of X26-like pulses ranged from 4 to 5 times higher than the X26 itself. Relatively large variations about the X26 operating level were found not to result in fibrillation or asystole. Therefore, it should be possible to design and build an X26-type device that operates efficiently at levels higher than the X26.
A previous study reported thermal effects resulting from millimeter wave exposures at 35 and 94 GHz on non-human primates, specifically rhesus monkeys’ (Macaca mulatta) corneas, but the data exhibited large variations in the observed temperatures and uncertainties in the millimeter wave dosimetry. By incorporating improvements in models and dosimetry, a non-human primate experiment was conducted involving corneal exposures that agreed well with a three-layer, one-dimensional, thermodynamic model to predict the expected surface temperature rise. The new data indicated that the originally reported safety margins for eye exposures were underestimated by 41 ± 20% over the power densities explored. As a result, the expected minimal visible lesion thresholds should be raised to 10.6 ± 1.5 and 7.1 ± 1.0 J cm−2 at 35 and 94 GHz, respectively, provided that the power density is less than 6 W cm−2 for subjects that are unable to blink. If the blink reflex was active, a power density threshold of 20 W cm−2 could be used to protect the eye, although the eyelid could be burned if the exposure was long enough.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.