We have shown that crystals of the highly emissive copper(I) compounds [Cu(POP)(dmp)]tfpb, [Cu(xantphos)(dmp)]tfpb, [Cu(xantphos)(dipp)]tfpb, and [Cu(xantphos)(dipp)]pftpb, (where POP = bis[2-(diphenylphosphino)phenyl]ether; xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; dmp = 2,9-dimethyl-1,10-phenanthroline; dipp = 2,9-diisopropyl-1,10-phenanthroline (dipp); tfpb(-) = tetrakis(bis-3,5-trifluoromethylphenylborate); and pftpb = tetrakis(pentfluorophenyl)borate) are oxygen gas sensors. The sensing ability correlates with the amount of void space calculated from the crystal structures. The compounds exhibit linear Stern-Volmer plots with reproducible K(SV) constants from sample to sample; these results reinforce the observations that the sensing materials are crystalline and the sensing sites are homogeneous within the crystals. The long lifetime (∼30 μs), high emission quantum yield (ϕ = 0.66), appreciable K(SV) value (5.65), and very rapid response time (51 ms for the 95% return constant) for [Cu(xantphos)(dmp)]tfpb are significantly better than those for the [Cu(NN)(2)]tfpb complexes studied previously and compare favorably with [Ru(4,7-Me2phen)(3)](tfpb)(2), (K(SV) = 4.76; 4,7-Me(2)phen = 4,7-dimethyl-1,10- phenanthroline). The replacement of precious metals (like Ru or Pt) with copper may be technologically significant and the new compounds can be synthesized in one or two steps from commercially available starting materials. The strictly linear Stern-Volmer behavior observed for these systems and the absence of a polymer matrix that might cause variability in sensor to sensor sensitivity may allow a simple single-reference point calibration procedure, an important consideration for an inexpensive onetime limited use sensor that could be mass produced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.