Spinal manipulation (SMT) is commonly used for treating individuals experiencing musculoskeletal pain. The mechanisms of SMT remain unclear; however, pain sensitivity testing may provide insight into these mechanisms. The purpose of this systematic review is to examine the literature on the hypoalgesic effects of SMT on pain sensitivity measures and to quantify these effects using meta-analysis. We performed a systematic search of articles using CINAHL, MEDLINE, PsycINFO, and SPORTDiscus from each databases’ inception until May 2011. We examined methodological quality of each study and generated pooled effect size estimates using meta-analysis software. Of 997 articles identified, 20 met inclusion criteria for this review. Pain sensitivity testing used in these studies included chemical, electrical, mechanical, and thermal stimuli applied to various anatomical locations. Meta-analysis was appropriate for studies examining the immediate effect of SMT on mechanical pressure pain threshold (PPT). SMT demonstrated a favorable effect over other interventions on increasing PPT. Subgroup analysis showed a significant effect of SMT on increasing PPT at the remote sites of stimulus application supporting a potential central nervous system mechanism. Future studies of SMT related hypoalgesia should include multiple experimental stimuli and test at multiple anatomical sites.
Manual therapy (MT) is a passive, skilled movement applied by clinicians that directly or indirectly targets a variety of anatomical structures or systems, which is utilized with the intent to create beneficial changes in some aspect of the patient pain experience. Collectively, the process of MT is grounded on clinical reasoning to enhance patient management for musculoskeletal pain by influencing factors from a multidimensional perspective that have potential to positively impact clinical outcomes. The influence of biomechanical, neurophysiological, psychological and nonspecific patient factors as treatment mediators and/or moderators provides additional information related to the process and potential mechanisms by which MT may be effective. As healthcare delivery advances toward personalized approaches there is a crucial need to advance our understanding of the underlying mechanisms associated with MT effectiveness.
Objective The purpose of this study was to use functional magnetic resonance imaging (fMRI) to investigate the immediate changes in functional connectivity (FC) between brain regions that process and modulate the pain experience following 3 different types of manual therapies (MT) and to identify reductions in experimentally induced myalgia and changes in local and remote pressure pain sensitivity. Methods Twenty-four participants (17 females, mean age ± SD = 21.6 ± 4.2 years), who completed an exercise-injury protocol to induce low back pain, were randomized into 3 groups: chiropractic spinal manipulation (n=6), spinal mobilization (n=8) or therapeutic touch (n=10). The primary outcome was the immediate change in FC as measured on fMRI between the following brain regions: somatosensory cortex, secondary somatosensory cortex, thalamus, anterior and posterior cingulate cortices, anterior and poster insula, and periaqueductal grey. Secondary outcomes were immediate changes in pain intensity measured with a 101-point numeric rating scale, and pain sensitivity, measured with a hand-held dynamometer. Repeated measures ANOVA models and correlation analyses were conducted to examine treatment effects and the relationship between within-person changes across outcome measures. Results Changes in FC were found between several brain regions that were common to all 3 manual therapy interventions. Treatment-dependent changes in FC were also observed between several brain regions. Improvement was seen in pain intensity following all interventions (p<0.05) with no difference between groups (p>0.05). There were no observed changes in pain sensitivity, or an association between primary and secondary outcome measures. Conclusion These results suggest that manual therapies (chiropractic spinal manipulation, spinal mobilization, and therapeutic touch) have an immediate effect on the FC between brain regions involved in processing and modulating the pain experience. This suggests that neurophysiological changes following MT may be an underlying mechanism of pain relief.
Study Design Secondary analysis of prospectively collected data. Background An abundance of evidence has highlighted the influence of pain catastrophizing and fear avoidance on clinical outcomes. Less is known about the interaction of positive psychological resources with these pain-associated distress factors. Objective To assess whether optimism moderates the influence of pain catastrophizing and fear avoidance on 3-month clinical outcomes in patients with shoulder pain. Methods Data from 63 individuals with shoulder pain (mean ± SD age, 38.8 ± 14.9 years; 30 female) were examined. Demographic, psychological, and clinical characteristics were obtained at baseline. Validated measures were used to assess optimism (Life Orientation Test-Revised), pain catastrophizing (Pain Catastrophizing Scale), fear avoidance (Fear-Avoidance Beliefs Questionnaire physical activity subscale), shoulder pain intensity (Brief Pain Inventory), and shoulder function (Pennsylvania Shoulder Score function subscale). Shoulder pain and function were reassessed at 3 months. Regression models assessed the influence of (1) pain catastrophizing and optimism and (2) fear avoidance and optimism. The final multivariable models controlled for factors of age, sex, education, and baseline scores, and included 3-month pain intensity and function as separate dependent variables. Results Shoulder pain (mean difference, -1.6; 95% confidence interval [CI]: -2.1, -1.2) and function (mean difference, 2.4; 95% CI: 0.3, 4.4) improved over 3 months. In multivariable analyses, there was an interaction between pain catastrophizing and optimism (β = 0.19; 95% CI: 0.02, 0.35) for predicting 3-month shoulder function (F = 16.8, R = 0.69, P<.001), but not pain (P = .213). Further examination of the interaction with the Johnson-Neyman technique showed that higher levels of optimism lessened the influence of pain catastrophizing on function. There was no evidence of significant moderation of fear-avoidance beliefs for 3-month shoulder pain (P = .090) or function (P = .092). Conclusion Optimism decreased the negative influence of pain catastrophizing on shoulder function, but not pain intensity. Optimism did not alter the influence of fear-avoidance beliefs on these outcomes. Level of Evidence Prognosis, level 2b. J Orthop Sports Phys Ther 2017;47(1):21-30. Epub 5 Nov 2016. doi:10.2519/jospt.2017.7068.
Background: Although nearly everyone at some point in their lives experiences back pain; the amount of interference with routine activity varies significantly. The fear-avoidance (FA) model of chronic pain explains how psychological variables, such as fear, act as mediating factors influencing the relationship between clinical pain intensity and the amount of interference with daily activities. What remains less clear is how other mediating factors fit within this model. The primary objective of this report was to examine the extent to which a dynamic measure of pain sensitivity provides additional information within the context of the FA model. Method: To address our primary objective, classic mediation and moderated mediation analyses were conducted on baseline clinical, psychological and quantitative sensory measures obtained on 67 subjects with back pain (mean age, 31.4 ± 12.1 years; 70% female). Results: There was a moderately strong relationship (r = 0.52; p < 0.01) between clinical pain intensity and interference, explaining about 27% of the variance in the outcome. Mediation analyses confirmed fear partially mediated the total effect of clinical pain intensity on interference (Δβ = 0.27; p < 0.01), and accounted for an additional 16% of the variance. In our FA model, pain sensitivity did not demonstrate additional indirect effects; however, it did moderate the strength of indirect effects of fear. Conclusion: This preliminary modelling suggests complex interactions exist between pain-related fear and pain sensitivity measures that further explain individual differences in behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.