The central distribution of visceral primary afferent fibers from the pelvic nerve of the cast and the relationship of these fibers to preganglionic neurons of the sacral parasympathetic neurons (SPN) have been studied. Horseradish peroxidase (HRP) applied to the cut pelvic nerve was detected ipsilaterally in preganglionic neurons and dorsal root ganglion cells (segments S1-S3), and in central afferent projections to Lissauer's tract (LT), the dorsal columns, the dorsolateral funiculus, and spinal gray matter. The afferent projections were strongest in the region of the SPN (S1-S3) but extended far beyond its limits (e.g., LT was labeled from L4 to Cx7). In the transverse plane, collateral fiber bundles formed a thin shell around the dorsal horn predominantly within lamina I and expanded into terminal fields in the gray matter. The more prominent lateral collateral projection (LCP) extended into laminae V and VI, whereas the medial one (MCP) ended in the dorsal commissure. In longitudinal planes these projections exhibited a periodicity with an interval of approximately 200 micrometer. The distribution of afferent collateral projections overlaps the regions where many preganglionic neurons and their dendritic extensions are located, and also areas known to contain interneurons involved in visceral pathways. A differential distribution of afferents within the SPN was noted where a higher intensity was observed in proximity to those neurons located in laminae V and VI, which innervate the colon, and a lower intensity near neurons located in Lamina VII which innervate the bladder. This is consistent with the known spinal control of colon reflexes and the supraspinal control of bladder reflexes. The widespread rostrocaudal extent of the pelvic primary afferent projection is consistent with the necessity for the integration of somatic and autonomic elements from various levels of the lumbo-sacral-coccygeal spinal cord in the performance of pelvic visceral functions.
Improved methods for studying intracellular reactive iron(II) are of significant interest for studies of iron metabolism and disease relevant changes in iron homeostasis. Here we describe a highly-selective reactivity-based probe in which Fenton-type reaction with intracellular labile iron(II) leads to unmasking of the aminonucleoside puromycin. Puromycin leaves a permanent and dose-dependent mark on treated cells that can be detected with high sensitivity and precision using the high-content, plate-based immunofluorescence assay described. Using this new probe and screening approach, we detected alteration of cellular labile iron(II) in response extracellular iron conditioning, overexpression of iron storage and/or export proteins, and post-translational regulation of iron export. Finally, we utilized this new tool to demonstrate the presence of augmented labile iron(II) pools in cancer cells as compared to non-tumorigenic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.