The formation of the chordae tendineae of the left atrioventricular valve in the chick embryo is described using scanning electron microscopy. These supportive structures for the valve cusps develop between days 6 and 13 of incubation. Elevations which represent the primitive papillary muscles form on the ventricular wall. These elevations bifurcate into thin, web-like folds which are attached to the primitive valve cusps. The folds are the primordia of the chordae tendineae. Linear ridges develop on the web between the cusp and papillary muscle. These ridges alternate with depressions. The depressions become perforate to create the individual chorda from the linear ridges. Multiple perforations form initially but they typically consolidate to create one large aperture between two chordae. Some interchordal connections of tissue do persist throughout the period studied. During the period of perforation, prominent rounded cells are typical of the endocardium between the chordae. These cells are similar at the scanning electron microscope level to those present in the formation of the foramina secunda of the atrial septum. Primary, secondary, and tertiary chordae tendineae appear to develop in the same manner. First order chordae (those attached at the free margin of a cusp) are not found in the chick embryo. The majority of the chordae are second order, which insert into the ventricular surface of the cusp a short distance from the free edge. These chordae typically have a horizontal banding or grooving along their length. Third order chordae which extend from the papillary muscle to the ventricular wall are also present. It is suggested that chordal development is a programmed cellular and hemodynamic event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.