A new procedure is described to deposit paramagnetic beads on surfaces to form microscopic agglomerates. By using surface-modified beads, microscopic structures with defined biochemical activity are formed. The shape and size of agglomerates were characterized by scanning electron microscopy (SEM), and the biochemical activity was mapped with scanning electrochemical microscopy (SECM). This approach is demonstrated using beads modified with anti-mouse antibodies (Ab). After allowing them to react with a conjugate of mouse IgG and alkaline phosphatase (ALP), the beads were deposited as agglomerates of well-defined size and shape. The biochemical activity was recorded in the generation-collection SECM mode by oxidizing 4-aminophenol formed in the ALP-catalyzed hydrolysis of 4-aminophenyl phosphate at the surface of the beads. The signal height correlated with both the amount of beads present in one agglomerate and the proportion of Ab binding sites saturated with the ALP mouse IgG conjugate. The feedback mode of the SECM was used to image streptavidin-coated beads after reaction with biotinylated glucose oxidase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.